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Abstract in the space-charge fields. The slice model can be under-

. . . stood as a model of the behavior of the central portion of
The WARPI[1] code is being developed and applied tg,¢ oo, (where the beam is fairly uniform axially) ver-

simulate the creatipn and propagation of the _high-curre us time, or as the behavior of an infinitely long beam as a
space-charge dominated beams that are required for hané(ﬁction of distance. Slice simulations are not new, in fact

ion driven fusion energy (HIF). New methods and capag,q first simulations of beams for heavy-ion fusion were
bilities have recently been introduced into WARP, a multi, lice simulations, but the model implemented in WARPxy
dimensional particle-in-cell code developed for the study Ogontains several 7new important features.

space-charge dominated beams. We describe: (a) a 2D3V.

“slice” model (WARPxy) with two novel capabilities: the
optional use of 3D applied fields (which can be calculate

using the WARP3d solver), and an “exact” treatment o

The slice code WARPxy was originally adapted from,
gnd is closely coupled to, the WARP3d code, immediately
giving it the full power of problem specification and diag-

. : ; o nostics of the three-dimensional code. An example is a rich
a bent beam pipe, via coordinate transformations; (b) &t of methods for specifying the fields of accelerator lat-

muIt|gr|FI fleldso_lverw_hlc_:h offers internal conductorsin Z.Dtice elements in WARP3d that was easily adapted to work
and 3D; (c) serial optimizations for cache-based machines.

which yielded a 20-30% speedup: and (d) a Python inte}. ithin the _slice cc_)de_. The close coupling allows much shar-
. t Ing of coding which is common to the two models, such as

face which has been developed to give the full power of @~ .. . . .
Pl’tlde moments calculations and other diagnostics.

scripting language user interface in both serial and parallg . . : o
computing environments. An important issue in beam dynamics is the presence of

an axial velocity spread, which can lead to an increase in
transverse emittance and directly affects the final spot size
1 INTRODUCTION on target. A scheme was adopted in the slice code to in-
. ) , . .. clude the axial velocity spread as well as changes in the ax-
A heavy-ion induction accelerator is a promising candldat%| velocity, such as from acceleration gaps and from axial
for a driver for inertial confinement fusion power produc-t, e components of other lattice elements. Another issue

tion. In order to drive the target to ignition, a driver MUStq the effect of bends on the beam. It is known that when a
produce a beam with a high current (several kAs), mOdeﬁeam with an axial velocity spread enters a bend, its emit-

ate energy (several GeVs), but very low emittance (severgl e \yi|l increase[2]. Bends are present in the driver de-

w—r;:m—n}rlilds). The beaTnsl are space-charge dom;]n_ated &ns to guide the beams into the target chamber, and more
be ave like non-neutral plasmas. In order_ to achieve thg nificantly, in driver designs based on recirculating accel-
required emittance, a thorough understanding is needed gf-; .« The same scheme adopted for the velocity spread

the behavior of the beam and the effects of manipulationg,q aqapted to include bends, where the time step size of
and errors. We have developed WARP, a multl-dlmensmnglach particle is a function of its radial position.

particle-in-cell/accelerator code, to study the physics of o underlying integration method for advancing the
such high-current, low emittance beams.

) particles is the leap-frog method. In the slice model, the
_ WARP has been designed and developed to be a flexg, size has a constant physical lengls, and so the
ible simulation tool, allowing simulation of all sections

. . ¢ . - > time step size is dependent on the axial velocity of the in-
of a driver at various !evels of detail and d'mens'ona“tYdividual particles. When the axial velocity of the particles
Some of the recently implemented methods and Capab"éhanges, the time step-size must be adjusted. The algo-
ties which enhance that flexibility are described here: newy,m used in WARPxy is to iterate over the first two steps
physics models, computational techniques, and COMPULEf he split-leap frog time advance.

science issues.

gt gy LE"
2 SLICE MODEL TR =0 A (1)
A slice model is a transverse model of a beam, ignoring F— gy AL @)

some longitudinal effects, primarily longitudinal variations

HereZ andd are the position and velocity_«f is the force,
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advance of the axial position, 3 MULTIGRID POISSON SOLVER
At = At% (3) The WARP code uses an electrostatic model of the self-
_ _ 2T _ field of the beams which requires solving Poisson’s equa-
The partial advance is then redone with the new time-stafon to calculate the potential on a Cartesian mesh. The
size. Once the iteration converges and the correct time-stggde now has three primary Poisson solvers. The fastest is

size is obtained, the particle advance is completed. an FFT based solver which does sine-sine-periodic FFT’s
.1 Frtt _to mode_I an infinitely long conducting square _pipe. Capac-
gt — gnts 4 3 At (4) ity matrix methods can be used to include simple bound-

i i _ ) __aries such as a round conducting pipe. With more complex
Our experience is that the iteration converges very rapidlyonquctor geometry, however, the required matrix rapidly
The code always iterates all of the particles a set number ghcomes too large, and so an iterative method, successive
times, which can be controlled by the user. ~ over-relaxation (SOR), was implemented for such cases.
When in a bend, the same iteration is done but with th¢,e SOR method allows inclusion of arbitrarily complex
scaling of the time-step size also accounting for the rotatiogynquctor geometry with much less penalty. Unfortunately
of the slice frame around the bend. The scaling is done ifF\ough, for the typical mesh sizes used, the SOR method is

polar coordinates relative to the center of the bend. roughly ten times slower than the FFT method without any
, A6 conductors, and becomes comparatively worse with larger
At = At—— (5) . i . . . .
gn+l _ gn mesh sizes. In the three-dimensional simulations using the

SOR method, the total simulation time was dominated by

the Poisson solve. Because of the computational time re-

dinate system at time level. This iteration converges as quiredto genergte large qapamty matrices prto use the SOR
method, the grid resolution and propagation distance has

rapidly as with no bends. L .
The calculation of the beam self-fields must also includgeen limited when using complex conductor geometry.

the curvature of the bends. When the self-fields are cal- A third method, the multigrid method(3], has recently

culated by solving Poisson’s equation, the curvature ternR€€N implemented. It promises faster solution while hav-
can be treated as source terms, iterating to reach conv&d & small penalty for complex conductor geometry. The
gence. While alternative direct methods are available g@ultigrid method for solving Poisson's equation on a
solver Poisson’s equation with the curvature terms, the iz@tesian mesh was adapted to include internal conduc-
erative method was chosen since the same method is ud8F: The SOR solver is used to iteratively refine the error

in WARP3d. Also, the speed of the field solution is noO" €ach of the coarse grid levels, allowing use of the same
critical since the two-dimensional simulation time tends t¢€chniques for applying internal conductors which were de-
be dominated by the time of the particle advance. veloped for the full SOR solver. The two techniques used

The algorithm has been thoroughly tested. Numerol2'e .forcing of the pptenti_al inside of the ponductor to thg
single particle tests have shown empirically that the methdifSired value each iteration, and a subgrid-scale r.esolu"uon
is second order in\t, the same as the underlying leap-frogMethed in which the finite difference form of Poisson's
advance. Full beam tests have also be carried out. Two te§@uation is modified for points within one grid cell out-
are described here. side the surface of the conductors to explicitly include the

As a test of the bending algorithm, a beam is propagatd@cation of the surface[4].
through a straight lattice but with the coordinate system In order to achieve the rapid convergence of the multi-
of the simulation following s-bends. The s-bends deviatgrid method, the conducting boundary conditions must be
from the beam centroid path by roughly the beam radiugpplied at all levels of coarseness. So, for each level, a list
The simulated beam behaved as expected, reproducing ®fethe grid points which are affected by a conductor is re-

correct envelope and showing no anomalous growth in th@uired. For the points inside of the conductor, this offers
emittance. no difficulty since only a simple check is needed to deter-

In another test, the behavior of a beam with an axmine whether the points on the finest grid that are inside of
ial velocity spread as it entered a bend was examined.conductor are on the coarse grid.
The slice simulations were compared with both the three- The subgrid-scale resolution technique, though, requires
dimensional simulation and an analytic theory developed tadditional data. On the coarse grid levels, there will be
explain the emittance growth in a bend[2]. Good agreemepints within one coarse grid cell of the conductor surface
was found among all three. The slice simulations show oshat were more grid cells away on the finest grid. Those
cillations in the emittance which agree in amplitude angboints must be included. To generate this data, an algo-
frequency with the WARP3d simulation and theory. Theaithm was developed that begins with the subgrid-scale data
simulations do show damping in the emittance oscillation®r the finest grid and scans the grid at each of the coarse
that is not included in the theory. The analytic theory doekevels to gather the data for the coarse levels. For each of
give asymptotic limits on the emittance growth and thesthe points in the total list, the lowest coarseness level at
agree with the simulation results. which a point is on a grid is saved. So, at each level of

Here,Af = As/rhenda Whererpenq is the bend radius, and
6™ is the axial position of the particle in the polar coor-



coarseness, a point must pass two tests to determine if il@®ps or making inner loops over the first indices of arrays
near a conductor: the coarseness level at which the point(is Fortran) accomplishes this. The second technique is to
on a grid must be less than or equal to the current coarseaximize the number of mathematical operations for each
ness level, and the point must be within one grid cell of &etch/store from memory. Combining loops is a good way
conductor. to accomplish this. An implication of this is that the array
The multigrid method has the same scaling of operatiosyntax of Fortran 90 will be bad for cache reuse since it
count with the number of grid cells as the FFT. Timingstends to break calculations into shorter loops. The third
see Table 1, show that the FFT is about three to four timesethod relies on knowing the cache line size, the size of
faster for all of the grid sizes examined. While the incluthe chunk of data that is brought into the cache at once.
sion of conductors does slow the solver down, the solvéhe arrays should be arranged in memory so that multiple
times are still far below that of the original SOR methodarrays used inside of the same loop do not push each other
The increase in speed will allow simulations with higheiout of the cache.
resolution and longer propagation distances than was prac-The 3-D FFT Poisson solver is used as an example of
tical with the original SOR solver. where cache reuse can improve the execution time. The
Table 1. Timings of the field solvers on a single procesEFT’s are organized as “gang” FFT's - in the transforms
of a Cray J90. All times are in seconds. The numbers iAver each dimension, the inner loops in the transform are
parenthesis are the number of iterations required to rea8er one of the other dimensions. For the transverse trans-

the desired convergence. forms, the outer loop is over the third dimension, while the
first two dimensions switch roles between the transformed
Multigrid | FFT SOR and the ganged. In both cases, the data is well localized.
64x64x64 1.6(8) |0.41| 4.7(170) For the transform over the third dimension, though, the data
128x128x128 | 10.6(8) | 2.9 | 74.0(340) is not localized, there is a large stride in memory, and there
ratio of timings 6.6 71 15.7 is little cache reuse. Timings of the code bear this out;
128/64 the transform over the third dimension runs several times
64x64x64 8.7 (12) ~ [ 17.4(230) slower than the transforms over the first two (which are
with conductors roughly equal).
The way around the decreased performance is to tem-
4 OPTIMIZATION TECHNIQUES porarily rearrange the data to localize it in memory for the

transform. The 3-D data is divided into slices along the

Since WARP3d is a three-dimensional code, the simulaecond dimension, each slice consisting of a plane of data
tion time can grow very large. Because of this, much efwith the first dimension as one axis and the third dimension
fort has been put into optimizing the code. The optimizaas the other. Each slice is copied into a temporary array and
tion can be done by using advanced computational methotsen transformed along the third dimension. This gives the
to reduce the total amount of computation needed, as wittame locality as in the original transverse transform. After-
the implementation of the multigrid solver described abovayard, the data is copied back. The resulting transform time
or as with the use of higher-order integration methods[5]s reduced to be same as the time of the transverse trans-
The methods discussed here are methods for increasing them. One of the copies is “free” since the array was looped
speed at which a set amount of computation is done. over anyway to multiply it by a constant and so the penalty

There are a number of simple optimizations that can big the one additional copy. The gain however is a factor of
done which reduce the time of computation on serial maseveral reduction in the transform time for that dimension.
chines. For example: combine constants in loops and r&he total gain over the full Poisson solve is typically a 30%
move them completely from loops if possible; remove direduction in computation time.
vides from loops if possible, and if not possible, put the di-
vide as early as possible if the result will be used inside of
the loop; treat multidimensional arrays as one-dimensional 5 PYTHON INTERFACE TO WARP
arrays; use “if” statements to avoid unnecessary work, even
inside of loops; and optimize the cache use. The last tectbur experience has shown that to realize the full power and
nigue is described more fully. capability of a large code, a high-level, flexible, sophisti-

Most modern day computers have non-uniform memorgated interface is required. A primary requirement of the
access: many more CPU cycles are required to bring dataerface is full language support for user-programmable
from the main memory to the cache, than from cache to theode control that can be used interactively. An inter-
register where the CPU can use the data. The differenpeeted scripting language provides such an interface. An-
is as large as a factor of thirty! The goal, then, is to reusether required element is visualization - for pre- and post-
data as much as possible once it is in the cache. There gm®cessing as well as for interactive use. In this section we
three basic techniques. The first is to take advantage déscribe the work we have done to maintain such a script-
the fact that the data is brought into the cache in chunkgg language interface in both the serial and parallel com-
Grouping data together in memory that is used together jputing environments.



5.1 Why useaninterpreter interface? 5.2 Parallel WARP with Basis

An interpreter interface provides a much more flexibldn our first attempt at a user interface to parallel version of
means of inputting data and controlling a code than th&/ARP, we wanted to retain Basis. Unfortunately, Basis has
more traditional command-line arguments and nameligtot been ported to the MPP architectures we use. We were
style interface. It does this by allowing the use of high@ble to get around this by running Basis on a local serial
level language constructs and by giving access to the ru#orkstation and having it spawn and control processes on a
time database and functionality of the code. This makes igmote MPP. Communication was done with PVM[7] since
easier to design a system where the code developers cret@llowed spawning of processes. The processes on the
a set a packages that users can combine and control to 4f’P were event driven - they would wait for commands
theirs needs, rather than create a code where the develdpat the user sends via the Basis interpreter and PVM.

ers build in a limited number of options that the users must While this system was effective and allowed us to get
choose from. WARP up and running on an MPP, it had significant draw-

An interpreter allows for more rapid code developmentdacks. Since there was no interpreter running on the MPP
Use of an interpreter removes the need for compile and lo&dde, all possible desired commands had to be prepro-
steps, directly reducing development time. It also acts ass@mmed, so access to runtime database and controllers
built in debugger, giving full access to the data, but is mor#/as limited to those for which special routines had been
powerful, allowing independent testing of code segmentdVritten. Because of the requirement for spawning, the code
Once algorithms have been developed and tested, they c&#ld only be run interactively - batch jobs could not be

be converted into compiled code if there is a problem witfiun- Also, the system required a “close connection” be-
speed. tween the workstation and the MPP. Due to computer cen-

The code size is reduced when an interpreter is usel§’ policy restrictions, this is not always possible. Because
' this last drawback, the parallel version of WARP was in

Most interpreters provide extensive services such as grapi-- . bl he ori MPP hi had
ics, memory management, and data dump and restart facifict Noperable on the primary machineé we had access

ties, for example. These are accessible from the interpret
language and do not need to be referenced from the com-
piled portion of the code. Only the core routines and algo®-3  Python

rithms need to built into the code, the rest can be writteye needed to make use of another interpreter and decided
at the interpreter Ievgl. Special f_eatures which have a ong, Python[8]. Python is a recently developed interpreter to
time use or are required by certain users, for example, Cqfhich compiled code can be linked and which has a num-
be kept out of the main code and written in the interpretedy, of advantages over Basis. The language is fully object-
language. oriented (supporting inheritance and polymorphism). It is

An interpreter can acts as “glue,” linking different codesa|so small and portable and runs on almost all types of ma-
and packages together. The packages can have sepatMes, UNIX, PC's running Linux or windows, and Mac-
variable name-spaces and can be developed separatelyjshes. Python also has a large number of developers and
different developers in different languages. The packagefas a broad base of available packages, such as linear al-
are brought together at the interpreter level; all have thgepra libraries, interfaces to graphical user interface devel-
same interface. opment libraries, world-wide-web software, and notably, a

WARP was originally built with the Basis code devel-parallel adaptation.
opment/interpreter system that was developed at LLNL[6]. There are problems with Python, though. A minor prob-
Basis has a number of advantages over other interpreteksm is the language itself, which has attributes which may
It has a built in mechanism for generating the interface bese unfamiliar to many scientific users, as discussed below.
tween the compile code and the interpreter language. It al$thon also lacks standards for important features such as
has a number of other important features built in, such agaphics and data dumps. There is also no built in method
graphics, memory management, data dumps and restag$automatically generating the interface between the com-
Also, the language is based on Fortran, making it easy {siled code and the interpreter language. While there are
use and convert into compiled Fortran. Another importangackages that do this, they are not flexible enough to meet
advantage is the modularity. Basis allows the code the kgl of our needs. Note that while the interface can be cre-
developed as a set of independent packages with separated by hand, doing so for a large code is not practical con-
name-spaces. The packages are glued together at the intggtering the size of the interface and the constant need for
preter. updating it.

There are a number of disadvantages of Basis as well. [t We had to develop our own software to automatically
is a rather large system which is not very portable. Bagenerate the interface between Fortran and Python. The
sis runs only on Unix and Linux machines. It is miss-software takes advantage of the work which was done for
ing some programming features, such as structures and dhe Basis interface. The same variable description files
jects. Also, it has a small number of developers, limitingvere used - a parser was written in Python to extract the in-
its breadth of features and development. formation needed from the files to create the interface. The



Fortran preprocessor used with the Basis system is keptand a lack of portability. For these reasons, we are cur-
that the original compiled code can be used essentially unently retaining both versions (the source is the same, only
changed. The coarse-grained object-oriented nature of tkiee interface and scripts are different). We are converting
Basis code is maintained. Each of the original Basis packhe Basis scripts to Python as they are needed.
ages is turned into a Python object and has its own name-
space. 6 CONCLUSIONS

The most important detail of the interface is the wa . . o
compiled variabples are accessed from the interpreter. nhIIe WARP is in some ways a mature code, it is still

the Python language, all variables are references to objecrfgp'dly evolving. We are adding new physics models, such

The major implication of this is that an assignment, such & the WARPxy model described. We are developing more

“a = b’, is actually a re-reference. Before the assignmen?dvanced computational techniques, such as the multigrid

the variables “a” and “b” refer to different objects. After !”hethod for solving Poisson’s equation. We are also adopt-

the assignment, “a” and “b” refer to the same object, that ihg modern computer science techniques, including opti-

which “b” originally referred, and the object to which “a” mization through cache reuse, use of the modern scripting

referred is lost. This means that there cannot be a direle\ng'“'age Python for code steering and user programmabil-

connection between a Python variable and a Fortran vat’ and massively parallel computation via message pass-

able, since that connection would be lost on an assignmer'ﬂ.g'
The way around the re-referencing is to make use of “at- 7 REFERENCES
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same user interface as the serial code. This combined sys-
tem is nearly fully operational; nearly all of the functional-

ity which was available with the original serial Basis ver-
sion is now available with the Python version, both serial
and parallel.

The development of the Python interface was a signifi-
cant step in the evolution of WARP. Since Basis is used in
several important LLNL codes, it will likely be around and
supported for a long time. However, some of its disadvan-
tages are unlikely to be removed. These include a lack of
structures and objects, limited available software packages,

5.4 Parallel WARP with Python



