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Abstract

The WARP[1] code is being developed and applied to
simulate the creation and propagation of the high-current,
space-charge dominated beams that are required for heavy-
ion driven fusion energy (HIF). New methods and capa-
bilities have recently been introduced into WARP, a multi-
dimensional particle-in-cell code developed for the study of
space-charge dominated beams. We describe: (a) a 2D3V
“slice” model (WARPxy) with two novel capabilities: the
optional use of 3D applied fields (which can be calculated
using the WARP3d solver), and an “exact” treatment of
a bent beam pipe, via coordinate transformations; (b) a
multigrid fieldsolver which offers internal conductors in 2D
and 3D; (c) serial optimizations for cache-based machines
which yielded a 20-30% speedup; and (d) a Python inter-
face which has been developed to give the full power of a
scripting language user interface in both serial and parallel
computing environments.

1 INTRODUCTION

A heavy-ion induction accelerator is a promising candidate
for a driver for inertial confinement fusion power produc-
tion. In order to drive the target to ignition, a driver must
produce a beam with a high current (several kAs), moder-
ate energy (several GeVs), but very low emittance (several
�-mm-mrads). The beams are space-charge dominated and
behave like non-neutral plasmas. In order to achieve the
required emittance, a thorough understanding is needed of
the behavior of the beam and the effects of manipulations
and errors. We have developed WARP, a multi-dimensional
particle-in-cell/accelerator code, to study the physics of
such high-current, low emittance beams.

WARP has been designed and developed to be a flex-
ible simulation tool, allowing simulation of all sections
of a driver at various levels of detail and dimensionality.
Some of the recently implemented methods and capabili-
ties which enhance that flexibility are described here: new
physics models, computational techniques, and computer
science issues.

2 SLICE MODEL

A slice model is a transverse model of a beam, ignoring
some longitudinal effects, primarily longitudinal variations
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in the space-charge fields. The slice model can be under-
stood as a model of the behavior of the central portion of
the beam (where the beam is fairly uniform axially) ver-
sus time, or as the behavior of an infinitely long beam as a
function of distance. Slice simulations are not new, in fact
the first simulations of beams for heavy-ion fusion were
slice simulations, but the model implemented in WARPxy
contains several new important features.

The slice code WARPxy was originally adapted from,
and is closely coupled to, the WARP3d code, immediately
giving it the full power of problem specification and diag-
nostics of the three-dimensional code. An example is a rich
set of methods for specifying the fields of accelerator lat-
tice elements in WARP3d that was easily adapted to work
within the slice code. The close coupling allows much shar-
ing of coding which is common to the two models, such as
particle moments calculations and other diagnostics.

An important issue in beam dynamics is the presence of
an axial velocity spread, which can lead to an increase in
transverse emittance and directly affects the final spot size
on target. A scheme was adopted in the slice code to in-
clude the axial velocity spread as well as changes in the ax-
ial velocity, such as from acceleration gaps and from axial
force components of other lattice elements. Another issue
is the effect of bends on the beam. It is known that when a
beam with an axial velocity spread enters a bend, its emit-
tance will increase[2]. Bends are present in the driver de-
signs to guide the beams into the target chamber, and more
significantly, in driver designs based on recirculating accel-
erators. The same scheme adopted for the velocity spread
was adapted to include bends, where the time step size of
each particle is a function of its radial position.

The underlying integration method for advancing the
particles is the leap-frog method. In the slice model, the
step size has a constant physical length,�s, and so the
time step size is dependent on the axial velocity of the in-
dividual particles. When the axial velocity of the particles
changes, the time step-size must be adjusted. The algo-
rithm used in WARPxy is to iterate over the first two steps
of the split-leap frog time advance.
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Here~x and~v are the position and velocity,~F is the force,
including electric and magnetic fields, andn is the time
level and the step size is�t. After this partial advance, the
time-step size is scaled by the amount of over- or under-



advance of the axial position,z.
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The partial advance is then redone with the new time-step
size. Once the iteration converges and the correct time-step
size is obtained, the particle advance is completed.
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Our experience is that the iteration converges very rapidly.
The code always iterates all of the particles a set number of
times, which can be controlled by the user.

When in a bend, the same iteration is done but with the
scaling of the time-step size also accounting for the rotation
of the slice frame around the bend. The scaling is done in
polar coordinates relative to the center of the bend.
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Here,�� = �s=rbend whererbend is the bend radius, and
�n is the axial position of the particle in the polar coor-
dinate system at time leveln. This iteration converges as
rapidly as with no bends.

The calculation of the beam self-fields must also include
the curvature of the bends. When the self-fields are cal-
culated by solving Poisson’s equation, the curvature terms
can be treated as source terms, iterating to reach conver-
gence. While alternative direct methods are available to
solver Poisson’s equation with the curvature terms, the it-
erative method was chosen since the same method is used
in WARP3d. Also, the speed of the field solution is not
critical since the two-dimensional simulation time tends to
be dominated by the time of the particle advance.

The algorithm has been thoroughly tested. Numerous
single particle tests have shown empirically that the method
is second order in�t, the same as the underlying leap-frog
advance. Full beam tests have also be carried out. Two tests
are described here.

As a test of the bending algorithm, a beam is propagated
through a straight lattice but with the coordinate system
of the simulation following s-bends. The s-bends deviate
from the beam centroid path by roughly the beam radius.
The simulated beam behaved as expected, reproducing the
correct envelope and showing no anomalous growth in the
emittance.

In another test, the behavior of a beam with an ax-
ial velocity spread as it entered a bend was examined.
The slice simulations were compared with both the three-
dimensional simulation and an analytic theory developed to
explain the emittance growth in a bend[2]. Good agreement
was found among all three. The slice simulations show os-
cillations in the emittance which agree in amplitude and
frequency with the WARP3d simulation and theory. The
simulations do show damping in the emittance oscillations
that is not included in the theory. The analytic theory does
give asymptotic limits on the emittance growth and these
agree with the simulation results.

3 MULTIGRID POISSON SOLVER

The WARP code uses an electrostatic model of the self-
field of the beams which requires solving Poisson’s equa-
tion to calculate the potential on a Cartesian mesh. The
code now has three primary Poisson solvers. The fastest is
an FFT based solver which does sine-sine-periodic FFT’s
to model an infinitely long conducting square pipe. Capac-
ity matrix methods can be used to include simple bound-
aries such as a round conducting pipe. With more complex
conductor geometry, however, the required matrix rapidly
becomes too large, and so an iterative method, successive
over-relaxation (SOR), was implemented for such cases.
The SOR method allows inclusion of arbitrarily complex
conductor geometry with much less penalty. Unfortunately
though, for the typical mesh sizes used, the SOR method is
roughly ten times slower than the FFT method without any
conductors, and becomes comparatively worse with larger
mesh sizes. In the three-dimensional simulations using the
SOR method, the total simulation time was dominated by
the Poisson solve. Because of the computational time re-
quired to generate large capacity matrices or to use the SOR
method, the grid resolution and propagation distance has
been limited when using complex conductor geometry.

A third method, the multigrid method[3], has recently
been implemented. It promises faster solution while hav-
ing a small penalty for complex conductor geometry. The
multigrid method for solving Poisson’s equation on a
Cartesian mesh was adapted to include internal conduc-
tors. The SOR solver is used to iteratively refine the error
on each of the coarse grid levels, allowing use of the same
techniques for applying internal conductors which were de-
veloped for the full SOR solver. The two techniques used
are forcing of the potential inside of the conductor to the
desired value each iteration, and a subgrid-scale resolution
method in which the finite difference form of Poisson’s
equation is modified for points within one grid cell out-
side the surface of the conductors to explicitly include the
location of the surface[4].

In order to achieve the rapid convergence of the multi-
grid method, the conducting boundary conditions must be
applied at all levels of coarseness. So, for each level, a list
of the grid points which are affected by a conductor is re-
quired. For the points inside of the conductor, this offers
no difficulty since only a simple check is needed to deter-
mine whether the points on the finest grid that are inside of
a conductor are on the coarse grid.

The subgrid-scale resolution technique, though, requires
additional data. On the coarse grid levels, there will be
points within one coarse grid cell of the conductor surface
that were more grid cells away on the finest grid. Those
points must be included. To generate this data, an algo-
rithm was developed that begins with the subgrid-scale data
for the finest grid and scans the grid at each of the coarse
levels to gather the data for the coarse levels. For each of
the points in the total list, the lowest coarseness level at
which a point is on a grid is saved. So, at each level of



coarseness, a point must pass two tests to determine if it is
near a conductor: the coarseness level at which the point is
on a grid must be less than or equal to the current coarse-
ness level, and the point must be within one grid cell of a
conductor.

The multigrid method has the same scaling of operation
count with the number of grid cells as the FFT. Timings,
see Table 1, show that the FFT is about three to four times
faster for all of the grid sizes examined. While the inclu-
sion of conductors does slow the solver down, the solve
times are still far below that of the original SOR method.
The increase in speed will allow simulations with higher
resolution and longer propagation distances than was prac-
tical with the original SOR solver.

Table 1. Timings of the field solvers on a single process
of a Cray J90. All times are in seconds. The numbers in
parenthesis are the number of iterations required to reach
the desired convergence.

Multigrid FFT SOR
64x64x64 1.6 (8) 0.41 4.7 (170)

128x128x128 10.6 (8) 2.9 74.0 (340)

ratio of timings 6.6 7.1 15.7
128/64

64x64x64 8.7 (14) - 17.4 (230)
with conductors

4 OPTIMIZATION TECHNIQUES

Since WARP3d is a three-dimensional code, the simula-
tion time can grow very large. Because of this, much ef-
fort has been put into optimizing the code. The optimiza-
tion can be done by using advanced computational methods
to reduce the total amount of computation needed, as with
the implementation of the multigrid solver described above,
or as with the use of higher-order integration methods[5].
The methods discussed here are methods for increasing the
speed at which a set amount of computation is done.

There are a number of simple optimizations that can be
done which reduce the time of computation on serial ma-
chines. For example: combine constants in loops and re-
move them completely from loops if possible; remove di-
vides from loops if possible, and if not possible, put the di-
vide as early as possible if the result will be used inside of
the loop; treat multidimensional arrays as one-dimensional
arrays; use “if” statements to avoid unnecessary work, even
inside of loops; and optimize the cache use. The last tech-
nique is described more fully.

Most modern day computers have non-uniform memory
access: many more CPU cycles are required to bring data
from the main memory to the cache, than from cache to the
register where the CPU can use the data. The difference
is as large as a factor of thirty! The goal, then, is to reuse
data as much as possible once it is in the cache. There are
three basic techniques. The first is to take advantage of
the fact that the data is brought into the cache in chunks.
Grouping data together in memory that is used together in

loops or making inner loops over the first indices of arrays
(in Fortran) accomplishes this. The second technique is to
maximize the number of mathematical operations for each
fetch/store from memory. Combining loops is a good way
to accomplish this. An implication of this is that the array
syntax of Fortran 90 will be bad for cache reuse since it
tends to break calculations into shorter loops. The third
method relies on knowing the cache line size, the size of
the chunk of data that is brought into the cache at once.
The arrays should be arranged in memory so that multiple
arrays used inside of the same loop do not push each other
out of the cache.

The 3-D FFT Poisson solver is used as an example of
where cache reuse can improve the execution time. The
FFT’s are organized as “gang” FFT’s - in the transforms
over each dimension, the inner loops in the transform are
over one of the other dimensions. For the transverse trans-
forms, the outer loop is over the third dimension, while the
first two dimensions switch roles between the transformed
and the ganged. In both cases, the data is well localized.
For the transform over the third dimension, though, the data
is not localized, there is a large stride in memory, and there
is little cache reuse. Timings of the code bear this out;
the transform over the third dimension runs several times
slower than the transforms over the first two (which are
roughly equal).

The way around the decreased performance is to tem-
porarily rearrange the data to localize it in memory for the
transform. The 3-D data is divided into slices along the
second dimension, each slice consisting of a plane of data
with the first dimension as one axis and the third dimension
as the other. Each slice is copied into a temporary array and
then transformed along the third dimension. This gives the
same locality as in the original transverse transform. After-
ward, the data is copied back. The resulting transform time
is reduced to be same as the time of the transverse trans-
form. One of the copies is “free” since the array was looped
over anyway to multiply it by a constant and so the penalty
is the one additional copy. The gain however is a factor of
several reduction in the transform time for that dimension.
The total gain over the full Poisson solve is typically a 30%
reduction in computation time.

5 PYTHON INTERFACE TO WARP

Our experience has shown that to realize the full power and
capability of a large code, a high-level, flexible, sophisti-
cated interface is required. A primary requirement of the
interface is full language support for user-programmable
code control that can be used interactively. An inter-
preted scripting language provides such an interface. An-
other required element is visualization - for pre- and post-
processing as well as for interactive use. In this section we
describe the work we have done to maintain such a script-
ing language interface in both the serial and parallel com-
puting environments.



5.1 Why use an interpreter interface?

An interpreter interface provides a much more flexible
means of inputting data and controlling a code than the
more traditional command-line arguments and namelist
style interface. It does this by allowing the use of high-
level language constructs and by giving access to the run-
time database and functionality of the code. This makes it
easier to design a system where the code developers create
a set a packages that users can combine and control to suit
theirs needs, rather than create a code where the develop-
ers build in a limited number of options that the users must
choose from.

An interpreter allows for more rapid code development.
Use of an interpreter removes the need for compile and load
steps, directly reducing development time. It also acts as a
built in debugger, giving full access to the data, but is more
powerful, allowing independent testing of code segments.
Once algorithms have been developed and tested, they can
be converted into compiled code if there is a problem with
speed.

The code size is reduced when an interpreter is used.
Most interpreters provide extensive services such as graph-
ics, memory management, and data dump and restart facili-
ties, for example. These are accessible from the interpreted
language and do not need to be referenced from the com-
piled portion of the code. Only the core routines and algo-
rithms need to built into the code, the rest can be written
at the interpreter level. Special features which have a one
time use or are required by certain users, for example, can
be kept out of the main code and written in the interpreted
language.

An interpreter can acts as “glue,” linking different codes
and packages together. The packages can have separate
variable name-spaces and can be developed separately by
different developers in different languages. The packages
are brought together at the interpreter level; all have the
same interface.

WARP was originally built with the Basis code devel-
opment/interpreter system that was developed at LLNL[6].
Basis has a number of advantages over other interpreters.
It has a built in mechanism for generating the interface be-
tween the compile code and the interpreter language. It also
has a number of other important features built in, such as
graphics, memory management, data dumps and restarts.
Also, the language is based on Fortran, making it easy to
use and convert into compiled Fortran. Another important
advantage is the modularity. Basis allows the code the be
developed as a set of independent packages with separate
name-spaces. The packages are glued together at the inter-
preter.

There are a number of disadvantages of Basis as well. It
is a rather large system which is not very portable. Ba-
sis runs only on Unix and Linux machines. It is miss-
ing some programming features, such as structures and ob-
jects. Also, it has a small number of developers, limiting
its breadth of features and development.

5.2 Parallel WARP with Basis

In our first attempt at a user interface to parallel version of
WARP, we wanted to retain Basis. Unfortunately, Basis has
not been ported to the MPP architectures we use. We were
able to get around this by running Basis on a local serial
workstation and having it spawn and control processes on a
remote MPP. Communication was done with PVM[7] since
it allowed spawning of processes. The processes on the
MPP were event driven - they would wait for commands
that the user sends via the Basis interpreter and PVM.

While this system was effective and allowed us to get
WARP up and running on an MPP, it had significant draw-
backs. Since there was no interpreter running on the MPP
side, all possible desired commands had to be prepro-
grammed, so access to runtime database and controllers
was limited to those for which special routines had been
written. Because of the requirement for spawning, the code
could only be run interactively - batch jobs could not be
run. Also, the system required a “close connection” be-
tween the workstation and the MPP. Due to computer cen-
ter policy restrictions, this is not always possible. Because
of this last drawback, the parallel version of WARP was in
fact inoperable on the primary MPP machine we had access
to.

5.3 Python

We needed to make use of another interpreter and decided
on Python[8]. Python is a recently developed interpreter to
which compiled code can be linked and which has a num-
ber of advantages over Basis. The language is fully object-
oriented (supporting inheritance and polymorphism). It is
also small and portable and runs on almost all types of ma-
chines, UNIX, PC’s running Linux or windows, and Mac-
intoshes. Python also has a large number of developers and
has a broad base of available packages, such as linear al-
gebra libraries, interfaces to graphical user interface devel-
opment libraries, world-wide-web software, and notably, a
parallel adaptation.

There are problems with Python, though. A minor prob-
lem is the language itself, which has attributes which may
be unfamiliar to many scientific users, as discussed below.
Python also lacks standards for important features such as
graphics and data dumps. There is also no built in method
of automatically generating the interface between the com-
piled code and the interpreter language. While there are
packages that do this, they are not flexible enough to meet
all of our needs. Note that while the interface can be cre-
ated by hand, doing so for a large code is not practical con-
sidering the size of the interface and the constant need for
updating it.

We had to develop our own software to automatically
generate the interface between Fortran and Python. The
software takes advantage of the work which was done for
the Basis interface. The same variable description files
were used - a parser was written in Python to extract the in-
formation needed from the files to create the interface. The



Fortran preprocessor used with the Basis system is kept so
that the original compiled code can be used essentially un-
changed. The coarse-grained object-oriented nature of the
Basis code is maintained. Each of the original Basis pack-
ages is turned into a Python object and has its own name-
space.

The most important detail of the interface is the way
compiled variables are accessed from the interpreter. In
the Python language, all variables are references to objects.
The major implication of this is that an assignment, such as
“a = b”, is actually a re-reference. Before the assignment,
the variables “a” and “b” refer to different objects. After
the assignment, “a” and “b” refer to the same object, that to
which “b” originally referred, and the object to which “a”
referred is lost. This means that there cannot be a direct
connection between a Python variable and a Fortran vari-
able, since that connection would be lost on an assignment.

The way around the re-referencing is to make use of “at-
tributes” of objects, which are like class members and func-
tions. The getting and setting of attributes can be redefined,
allowing the possibility of connecting an attribute to a com-
piled variable or function via the get and set routines. Get
and set routines are defined which perform a search through
the list of Fortran variables and subroutines of a package
object to find the one associated with the Python attribute.

A generic Python type is created and each package is
defined as being an object of that generic type. The defini-
tion of the type includes generic functions, such as the get
and set, which take the package object as an argument. In
creating an object for a package, all of the required infor-
mation is stored, such as the list of Fortran variables and
subroutines.

5.4 Parallel WARP with Python

Python is easily ported to an MPP environment, with one
caveat: the input and output must be controlled. Software
written by others[9] was obtained and used to do this. This
software is designed so that only one processor can read the
user input. That process then passes the input to the other
processes via message passing. The user can control which
processes can print output - the default is only the process
that reads the input.

Combining the existing parallelized Fortran code with
the Python interface and the input/output package gives
a fully interpreter-driven code on the MPP which has the
same user interface as the serial code. This combined sys-
tem is nearly fully operational; nearly all of the functional-
ity which was available with the original serial Basis ver-
sion is now available with the Python version, both serial
and parallel.

The development of the Python interface was a signifi-
cant step in the evolution of WARP. Since Basis is used in
several important LLNL codes, it will likely be around and
supported for a long time. However, some of its disadvan-
tages are unlikely to be removed. These include a lack of
structures and objects, limited available software packages,

and a lack of portability. For these reasons, we are cur-
rently retaining both versions (the source is the same, only
the interface and scripts are different). We are converting
the Basis scripts to Python as they are needed.

6 CONCLUSIONS

While WARP is in some ways a mature code, it is still
rapidly evolving. We are adding new physics models, such
as the WARPxy model described. We are developing more
advanced computational techniques, such as the multigrid
method for solving Poisson’s equation. We are also adopt-
ing modern computer science techniques, including opti-
mization through cache reuse, use of the modern scripting
language Python for code steering and user programmabil-
ity, and massively parallel computation via message pass-
ing.
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