
ODYSSEUS: A DYNAMIC STRONG-STRONG BEAM-BEAM
SIMULATION FOR STORAGE RINGS

E. B. Anderson, T. I. Banks, and J. T. Rogers,
Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853

Abstract

We have developed a simulation of the beam-beam interac-
tion in e+/e- storage ring colliders which is specifically in-
tended to reveal the dynamic collective behavior of the col-
liding beams. This program is a true 6-dimensional strong-
strong simulation in which the electromagnetic fields of
longitudinal slices of the colliding beams are recalculated
for each slice collision. Broadband wake fields are included
and no constraints are placed on the distribution of parti-
cles in the beams. Information on tests of the code will be
shown. Results will be presented including limiting beam-
beam parameters for round and flat beams, deviations from
the Gaussian distribution, effects of the beam-beam param-
eter on head-tail instability thresholds, and Landau damp-
ing rates. Possibilities for further improvements will be dis-
cussed.

1 INTRODUCTION

Our development of a beam-beam simulation program was
motived, in part, by the observation in the Cornell Elec-
tron Storage Ring (CESR) of an m = -1 head-tail instability
which occurs at lower beam current when beams are in col-
lision. This change seems to indicate that the instability is
interacting with the beam-beam effect. The head-tail insta-
bility involves particles moving forwards and backwards
within the bunch, so any model for this interaction would
have to describe the longitudinal dynamics of the bunch.
In addition, collective effects arising from the beam-beam
force alone can limit luminosity. The flip-flop instabil-
ity is commonly observed in e+e� storage ring colliders.
The DCI storage ring at LAL, Orsay, France, had four col-
liding beams in which the e+ beam charge was compen-
sated by the e� charge, but the beam-beam limit was not
significantly different from that for uncompensated beams.
The beam-beam limit in DCI was attributed to a collective
beam-beam instability [1]. This suggests that the beam-
beam limit for two-beam collisions may also be due, in
some cases, to a collective instability.

This paper presents a new beam-beam simulation pro-
gram, ODYSSEUS (Optimized DYnamic Strong-Strong
E-plus e-minUs Simulation). To the author’s knowl-
edge, ODYSSEUS is the first six-dimensional strong-
strong beam-beam simulation in which no constraints are
placed on the beams and is the first to include wake fields.
These features make it possible to investigate any mode of
oscillation of the colliding beams. ODYSSEUS is designed
to serve as a flexible, efficient, and portable tool for inves-
tigating beam-beam effects.

2 BASIC IDEAS

ODYSSEUS uses macroparticles to model the six-
dimensional motion of the particles in the beams. Typ-
ically, the number of macroparticles used is on the or-
der of ten thousand in each beam. With this number of
macroparticles the speed of the calculation is limited by the
electromagnetic field calculations. ODYSSEUS adaptively
chooses from a variety of different field computation meth-
ods. Different algorithms are used for the core and trans-
verse tails of the beam and for longitudinal slices with large
or with small charge. The parameters of the program can
be changed to model flat or round beams. Further, inclu-
sion of the longitudinal degrees of freedom and wake fields
allows the investigation of previously inaccessible physics.

2.1 Particle Tracking

On each simulated turn through the storage ring, each
macroparticle is propagated from the collision point and
back again through the linear optics of the storage ring, in-
cluding chromaticity, synchrotron radiation excitation and
damping, RF phase focusing, and wake field deflections.

The magnetic optics of the ring are approximated with
linear transport theory as described in many sources in-
cluding a popular article by M. Sands [2]. The fields in
the RF cavities are approximated as sinusoids, while the
change in position is handled using a momentum com-
paction. Macroparticles which have migrated past a trans-
verse aperture are no longer considered in the simulation.
As they pass the aperture, the positions and velocities of
these particles are recorded for later analysis. ODYSSEUS
handles the longitudinal variation of the electromagnetic
field of the beam by dividing the beam into slices that were
typically of equal thickness. Because the particles are mov-
ing at ultra-relativistic speeds, it is approximated that the
fields are entirely transverse.

Individual macroparticles undergoing longitudinal oscil-
lations may migrate from slice to slice, so on each turn the
macroparticles are sorted according to their longitudinal
position and reassigned to slices. This is necessary for the
calculation of both the electromagnetic wake field and the
actual beam-beam force. The longitudinal motion in most
accelerators is slow, so during collisions each macroparti-
cle is assumed to remain within its slice. Because the mo-
tion of a macroparticle from slice to slice is slow, Heapsort
is an effective sorting algorithm [3].



2.2 Radiation Effects

There are two major ways that random perturbations due
to synchrotron radiation are handled in beam-beam simu-
lations. The first is to use the description of the storage
ring to find the cumulative effects of the radiative kicks and
apply these to the beam. The second is to pick a radia-
tive kick that gives the known beam size or emittance. In
the horizontal direction the design of the magnetic optics
closely determines the magnitude of the radiative perturba-
tions. In the vertical direction errors in the optics and small
deviations from a horizontal orbit dominate the radiative
perturbations. For these reasons, ODYSSEUS uses infor-
mation derived from the synchrotron radiation integrals to
determine the size of the radiative kicks in the horizontal
case and phenomenological perturbations are added in the
vertical direction to agree with the actual beam size.

2.3 Wake Fields

Longitudinal and transverse, single bunch, short-range
wake fields are included in the simulation. One of the
program inputs is a list of longitudinal and transverse res-
onators with values for the resonant frequencies, shunt
impedances, and quality factors of the resonators. The
wake functions are therefore the sum of exponentially
damped sinusoids. The wake fields are calculated by sum-
ming up the effect of each of the effective resonators.

2.4 Collisions

During its passage though the opposing bunch, the trans-
verse position of each macroparticle may change appre-
ciably because the vertical interaction point beta function,
��V , in CESR and many other colliders is comparable to
the bunch length, �z . The simulation collides each pair of
slices sequentially, updating the transverse momenta and
positions of each macroparticle after each pairwise colli-
sion of slices. For each slice collision hxi, hyi, hx2i, hy2i,
and the total charge for the slice distribution are found, and
the slice electromagnetic field is calculated.

3 FIELD CALCULATION

For purposes of calculating the electromagnetic field from
the beam, each beam is divided into longitudinal slices. Al-
though the number of slices can be set arbitrarily, about
fifteen are typically used. The field from each slice, inte-
grated over the length of the slice, is calculated indepen-
dently. The beams are assumed to be ultra-relativistic, so
the field due to each slice is transverse and affects only the
particles within the region of that slice.

The calculation of the electromagnetic field of each
beam is adaptive in order to maximize the speed of the pro-
gram. One method uses moments of the beam to calculate
an approximate electromagnetic field, while others make
calculations of the fields on a rectangular grid. Different
methods are used depending on whether the field is calcu-
lated for the region of the beam core or for the beam tails,

whether the number of macroparticles within a slice, N , is
large or small, and whether the number of grid points, Ng,
used in the field calculation is large or small.

3.1 Beam core

3.1.1 Small N

If the number of macroparticles, N , within a slice is very
small, the integrated field at a probe beam macroparticle is
calculated from the exact radius vector from each opposing
source beam macroparticle. The field must be calculated
at the position of each macroparticle in the probe beam, so
the number of calculations goes as N 2, making this method
efficient only for very small N . In practice this method is
only used when N is less than fifty.

3.1.2 Large N , Small Ng

For larger values of N , the electromagnetic field is cal-
culated on a rectangular grid using pre-calculated Green’s
functions for charges on the grid points. Since the Green’s
function describes the effect of a single unit charge particle,
the Green’s function on the grid is found by calculating the
field at each grid point due to a unit charge at the origin:

G(~r) =

Z
�1

+1

~E(s; r)ds =
1

2��0

r̂

r
(1)

where ~r is the position vector for the grid point. Notice that
the Green’s function describes the integrated field strength
and has been doubled to take into account the effects of
the magnetic field. The macroparticle charge is assigned to
the grid points using one of two area-weighted techniques
(both techniques described are in Section 5). For small val-
ues of the number of grid points, the convolution of the
charge density and Green’s function is done as a summa-
tion in real space. The number of calculations required for
this convolution goes as N 2

g . The portion of the code whose
speed is dependent on the number of macroparticles is now
only linear in N . This technique is used only when the
number of grid points is quite small, generally under two
hundred.

3.1.3 Large N , Large Ng

For larger values of Ng , the convolution of the Green’s
functions and charge density is done as a simple multipli-
cation in wavenumber space. The speed of this method is
limited by the speeds of the necessary Fourier transform to
wavenumber space and the inverse transform back to real
space. The number of calculations goes as Ng log2Ng. To
suppress edge effect problems in the Fourier transforms,
the size of the wavenumber space is doubled in both direc-
tions and padded with zeros [4].

4 BEAM TAILS

The tails of the beam, typically taken to be particles with a
displacement of more than (10=3)� in the horizontal, ver-
tical, or longitudinal directions, are treated differently than



the core particles. The tail particles have very little effect
on the beam-beam force. They do, however, respond to
the beam-beam force and must be tracked to determine the
beam lifetime. Performing a strong-strong calculation for
the beam tails with the grid method is computationally in-
efficient and unnecessary, so a weak-strong calculation is
used.

4.1 Longitudinal Tails

Longitudinal tail particles are subject to forces from the
core of the opposing beam. This is a weak-strong calcu-
lation. A full calculation of the field from the opposing
beam slice is performed, as described above for the beam
core. The tails are assumed to have no effect on the other
beam. It should be noted that the user chooses the number
of slices that will be treated in a weak-strong manner and
that all slices can be treated as strong-strong slices if the
user chooses to do so.

4.2 Transverse Tails

The transverse tail particles are subject to a beam-beam
force of similar magnitude to that experienced by the core
particles. The fine structure of the charge distribution of
the core has little influence on the field in the transverse
tails, so the field there is calculated from a two-dimensional
Gaussian charge distribution with the same hxi, hyi, hx2i,
hy2i, and total charge as the charge distribution of the
slice. The field from this Gaussian charge distribution is
calculated from the rational approximation of Talman and
Okamoto [5] for the complex error function solution of
Bassetti and Erskine [6].

5 INTERPOLATION TECHNIQUES

Whenever a grid-based technique is used, it is necessary
to interpolate. The charges of the macroparticles must
be distributed on a grid for the field calculations, and the
fields calculated on the grid must be applied to particles
at arbitrary locations. In order to conserve momentum,
the same interpolation scheme must be used in these two
situations[4].

The lowest order interpolation scheme used in
ODYSSEUS is the Cloud-In-Cell (CIC) technique.
In this scheme the macroparticle is treated as a uniform
cloud the size of a grid rectangle. The portion of this cloud
closest to a grid point is assigned to that point. Since the
interpolation in ODYSSEUS is done on a two-dimensional
grid, this involves the four nearest grid points.

The second-order techniques that are most useful for this
type of calculation are the symmetrical five- and nine-point
interpolation schemes. A nine-point interpolation scheme
has been coded as an option in ODYSSEUS and is typi-
cally used instead of the CIC. The nine-point scheme that
is used is a natural extension of a one-dimensional tech-
nique called Triangular-Shaped Cloud (TSC). In the one-
dimensional case, TSC represents a macroparticle with a
triangular cloud two grid spaces wide. The fraction of

the area of the cloud that is closest to each of the grid
points is assigned to that point. ODYSSEUS uses the two-
dimensional extension of the technique. A set of three frac-
tions is found for each dimension, and these are multiplied
to find the weights at all nine nearby points.

When higher order interpolation schemes are used, the
charge of the macroparticle can be spread out so that it
conceals some of the structure of the charge distribution.
This is corrected by using a “sharpening function”. In
ODYSSEUS sharpening is done during the convolution of
the charge density and Green’s function in Fourier space.
To determine the sharpening function on the grid, a unit
charge is placed exactly on a grid point. The interpolation
scheme is then used, and some fraction of the charge will be
deposited on grid points other than the one where the unit
charge is actually located. The Fourier transform of this
grid is then found. If G represents the Green’s function,
�z represents the spread-out charge distribution, S repre-
sents the spreading function, F represents the appropriate
electromagnetic potential or field, and F z the spread-out
potential or field, then:

S(~r) ? F (~r) = F z(~r); (2)

F z(~r) = G(~r) ? �z(~r); (3)

and
S(~r) ? F (~r) = G(~r) ? �z(~r): (4)

Then in Fourier space it can simply be written that:

~F (~k) =
~G(~k)~�z(~k)

~S(~k)
: (5)

Because the fields are actually spread out twice, once when
interpolating to the grid and once when interpolating back
to the macroparticles, the actual expression used is:

~F (~k) =
~G(~k)~�z(~k)

~S(~k)2
: (6)

6 PRE- AND POST-PROCESSING

The preprocessing program Penelope was written to main-
tain consistency between the input variables and provide
a easy to use, portable interface. ODYSSEUS was de-
signed to investigate the coherent oscillations of the bunch,
so post-processing to analyze the bunch spectrum is nec-
essary. Post-processing and spectral analysis is done in a
Mathematica [7] notebook.

7 TESTING

7.1 Field Errors

A small program was written that generates the fields by
all the methods used in ODYSSEUS and compares them.
There is no difference between the real and Fourier space
PIC calculations.

There are significant differences between the time re-
quired for field calculations for flat and round beams. With



round beams a field calculation grid can be constructed out
of nearly square cells with equal numbers of cells in each
dimension. For example, a 32 by 32 grid has only 1024
grid cells, which allows it to run in a reasonable amount
of time. In contrast, the often extreme aspect ratios of flat
beams force the use of either large numbers of cells or in-
dividual cells with poor aspect ratios. For instance, a min-
imal 8 by 512 grid, appropriate for CESR, has 4096 cells
and takes about five times as long as the round beam calcu-
lation above.

When trying to accommodate flat beams with a reason-
able number of grid cells, one option is to give the individ-
ual grid cells aspect ratios other than unity, but there are
dangers in this method. Unless the grid cells are perfectly
square, there is no choice for the value of the potential at
the origin which provides symmetry between the x and y
components of the gradient of the potential. Using an elec-
tric field-based calculation and a separate Green’s function
for each component removes this problem, but many in-
terpolation techniques will break down as the aspect ratio
of the cells increases. ODYSSEUS uses a distinct Green’s
function for each component of the electric field. The max-
imum aspect ratio usually allowed was 1.4, but this could
be relaxed to significantly larger values for less demanding
calculations.

7.2 The Number of Slices

The experience of previous investigators [8] had indicated
that low numbers of slices, five or less, are necessary. This
estimate was not reasonable for ODYSSEUS for two rea-
sons. One reason is that most previous simulations in-
cluded a significant natural vertical emittance that made
many slicing errors insignificant. The second is that the
low ��y in CESR is comparable to the bunch length, mak-
ing the hourglass-like effect at the interaction point more
important. With round beams the ��y tends to be higher,
which decreases the hourglass effect and thus the number
of slices.

In the case of flat beams, simulations of beams with low,
non-colliding, vertical emittances need very large numbers
of slices. As discussed below, uniform slicing is partially
to blame. Other methods may exist which require fewer
slices, which is important since the speed of ODYSSEUS
scales as the square of the number of strong slices in each
beam.

An analytic estimate was made of the maximum possible
tune shift that could occur solely from the uniform slicing
method. In a particle-tracking simulation using longitudi-
nal slices of uniform width, particles at the front and back
of each slice receive a different deflection than would ac-
tual beam particles. The deflection error, to first order in
the derivatives of �(z), is

�y0m � ��y0m
1

�

d�

dz
�z (7)

where �y0m is the deflection due to slice m in the absence
of the error, and �z = z� (zm+ zm+1)=2. Slice m, where

m = �(M�1)=2; : : : ;�1; 0; 1; : : : ; (M�1)=2, spans the
interval (zm; zm+1). For a Gaussian �(z),

�y0m =
p
2�w(mw)e�m

2w2=2 �y
��y

�
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�z
2
mw

� �z

�z
(8)

where w = �z=�z is the slice length �z in units of �z .
Summing over all M slices,

�y0tot =
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2 )X
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2
)
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Because �z is approximately uniformly distributed on the
interval (zm; zm+1),
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Because the �z of a particle changes in a non-periodic way,
we will consider it to be random from turn to turn. When
the beam is in equilibrium between random excitation and
damping, 


�y02tot
�
= 4��02y (12)

where � is the vertical damping decrement. From equations
(11) and (12) we find that

�y;max =
4
p
3

�

��y
�z

p
� (13)

This is the maximum value of �y which will be produced by
the simulation due to the finite slice length. Other physical
or numerical effects may further reduce �y.

A series of calculations were made in the Gaussian ap-
proximation to investigate the effect of slicing. If increas-
ing the number of slices used does not affect the beam’s
size, tune-shift, and luminosity, then the original number
of slices is probably sufficient. At forty-five slices and
more the effect of additional slices drops off rapidly. The
noise introduced by slicing is typically unimportant com-
pared to the natural vertical emittance for forty-five slices.
For some applications of ODYSSEUS, forty-five slices are
prohibitive, and a better slicing technique will need to be
implemented.

7.3 Head-Tail Modes

Simulated head-tail damping modes for non-colliding
beams were in accordance with expectations. With beams
in collision, the m = +1 and m = �1 modes were both
shifted upwards in frequency by one-half of the �-mode /
�-mode tune shift. This is in accordance with the predic-
tions of Cornelis and Lamont [9].
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Figure 1: The figure above shows the vertical beam-beam
tune shift, ��y, as a function of the number of slices for a
series of runs. The straight line is an estimate of the maxi-
mum beam-beam parameter, �y, from slicing errors alone.

7.4 Speed

ODYSSEUS is currently being run on a 500 MHz �-chip
personal computer running LINUX. On this machine the
Gaussian approximation runs in this paper were done in
one to four hours, and the PIC methods took from less than
a day to five days. Runs lasted for a few radiation damping
times, from twenty to eighty thousand turns.

8 THE BEAM-BEAM RATIO

A number of predictions have been made for the beam-
beam ratio (��=�) [10, 11, 12, 13, 14, 15]. An interesting
initial test for the program was to compare the results of
ODYSSEUS with these previous results. The beam-beam
ratio was calculated using ODYSSEUS. Flat beams at 8
mA under CESR conditions were used to measure ��=�.
This ratio was done for beams with a longitudinal extent
and also for pancake-like beams. For three-dimensional
beams the vertical beam-beam ratio was found to be 1.39,
while the ratio was 1.18 for two-dimensional beams. The
horizontal beam-beam ratio was 1.0 in both cases.

9 CONCLUSIONS

There are a number of important computational advances
represented in ODYSSEUS. The most important of these
is its adaptive nature. The code dynamically chooses to
sum the forces over each particle individually, use a Gaus-
sian charge density approximation, or use a PIC method in
real or Fourier space. The grid used in the PIC calculations
is pre-generated, then readjusted dynamically as the beam
changes. ODYSSEUS also handles wake fields, something
that has not been included in similar simulations. Approx-
imations are used in the transverse and longitudinal tails
in order to save time on calculations. Runs can be done
in reasonable amounts of time, ranging from an hour to a
few days depending on the approximations used and beam

shape. ODYSSEUS is a significant advance in the simu-
lation of beam-beam effects, and there are possibilities to
improve it further.

There were some surprises in the writing and bench-
marking of ODYSSEUS. One surprise was the importance
of the individual cells’ aspect ratios when deciding what
sort of a grid to use for PIC calculations. Another was
the importance of slicing algorithms and, consequently, the
number of slices required. Improvements in the slicing por-
tion of the code have the possibility of making ODYSSEUS
significantly faster.
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