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Classification of Systems
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Admitting Higher-Order Conditional Symmetries
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Algorithm for construction of conditionally invariant systems of evolution equations and
their subsequent reduction to the systems of ordinary differential equations is suggested.
Classification and reduction theorems are formulated for n-order evolution equations and
for systems of two evolution equations. Two classes of conditionally invariant second order
systems of evolution equations are given, and their reduction to the systems of four ordinary
differential equations is carried out.

1 Introduction

Modelling of dynamic processes in physics, chemistry and other fields of science requires solving
evolution equations. Provided equations under study are linear, the methodology of constructing
exact solutions is developed quite well. In the case of nonlinear equations, there are no general
methods for finding their solutions. Among the most efficient methods for constructing exact
solutions of nonlinear evolution equations are those based on their conditional symmetries [1, 2].

A number of Galaktionov’s papers are devoted to constructing exact solutions of equations

ut = F (u, ux, uxx) , ut =
∂u

∂t
, ux =

∂u

∂x
, uxx =

∂2u

∂x2
, (1)

with quadratic nonlinearities. To this end the technique based on the concept of the invariant
subspace [3] is employed. New approach to reduction of nonlinear evolution equations (1) using
their higher symmetries was suggested in [4]. With the help of this approach, classification of
evolution equations [5] and in accordance with results presented in [6] reduction of initial-value
problem for them to Cauchy problem for system of ordinary differential equations (ODEs) [7]
was carried out. A number of exact solutions of equation (1) with quadratic nonlinearities were
obtained in [8] with the aid of ansatzes, being solutions of third-order linear ODEs.

In all the above mentioned papers the right-hand sides of equation (1) are quadratic polyno-
mials or can be transformed to them by a certain change of variables. Classes of systems

ut = uxx + F (u, v, ux, vx) , vt = −vxx + G (u, v, ux, vx) ,

admitting fourth-order symmetries, were described in [9]. F , G are fifth order polynomials.
In this paper we propose algorithm for construction of classes of systems of evolution equa-

tions, admitting conditional symmetries, and formulate classification and reduction theorems
for systems of evolution equations, which are analogous to theorems, proved in [4]. With help
of this algorithm we classify nonlinear equations

ut = F (t, x, u, ux, uxx) , (2)
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which admit reduction to systems of ODEs. To this end we consider these equations together
with the condition

uxxx = f (t, x, u, ux, uxx) . (3)

Equation (3) can be considered as an ODE with parameter t.
We also give examples for constructing of classes of conditionally invariant systems

ut = uxx + F (x, u, v, ux, vx) , vt = −vxx + G (x, u, v, ux, vx) (4)

and carry out their reduction to systems of four first-order ODEs.

2 Classification algorithm

Let us consider a system of partial differential equations (PDEs)

uit = Fi (t, x, u1, . . . , un) (5)

under additional conditions for functions ui

uix = fi (t, x, u, . . . , un) . (6)

Here and henceforth we assume, unless otherwise specified, that i = 1, n.
Let fi, Fi be continuously-differentiable functions of their arguments in some open domain Ω

and f̄ �= 0 in any point of this domain, ui = ui (t, x) are twice continuously-differentiable
functions. Differentiating (5) with respect to x, (6) with respect to t and equating right-hand
sides of obtained equalities we arrive at following compatibility condition for the system (5), (6)

Fix + u1xFi u1 + · · · + unxFi un = fi t + u1tfi u1 + · · · + un tfi un .

Taking into account (5), (6), we rewrite it in form

Fix + f1Fi u1 + · · · + fnFi un = fi t + fi u1F1 + · · · + fi unFn. (7)

By change of variables η = x, ωi = ωi (t, x, u1, . . . , un), where ωi are first integrals of (6):

Lωi = ωix + f1ωiu1 + · · · + fnωiun = 0,

(7) is transformed to system

Fiη = gi0 + gi1F1 + · · · + ginFn, (8)

where gij (t, ω1, . . . , ωn, η) = fiuj , gi0 (t, ω1, . . . , ωn, η) = fit.
By assumption that functions fi are known and system (5), (6) is compatible, Fi must satisfy

of linear system (8), that can be considered as an ODE with parameters t, ω1, . . . , ωn. Thus

Fi =
n∑

j=1

Gj (t, ω1, . . . , ωn) pij (η, t, ω1, . . . , ωn). (9)

Here (p̄1, . . . , p̄n) is a fundamental system of solutions of (7) and G1, . . . , Gn are arbitrary smooth
functions.

Substituting general solutions of (6) into (5), (9) we obtain system of ODEs that is equivalent

Ċi (t) = gi (t, , C1 (t) , . . . , Cn (t)) .

Now we consider the case that right-hand sides of equations (6) do not depend on t explicitly:

uix = fi (x, u1, . . . , un) . (10)

Then system (8) is homogenous (fit = 0 and consequently gi0 = 0).
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Theorem 1. Let Q = ξ (x, u1, . . . , un) ∂x +
n∑

l=1

ϕl (x, u1, . . . , un) ∂ul
be symmetry operator of

system (10) and in system (5) Fi = ϕi − ξfi. Then system (5), (10) is compatible. Here and in
the sequel ∂x = ∂

∂x , ∂ul
= ∂

∂ul
.

Proof. Since Q is a symmetry operator of system (10), then Pr(1)Q (uix − fi) = 0, for uix = fi.

Pr(1)Q = Q +
n∑

l=1

ϕl∂ulx
, ϕl = Dx (ϕl − ξulx) + ξulxx

is first prolongation of Q. Dx signifies total derivative with respect to x [10].
For system (10) we have

Pr(1)Q (uix − fi) =

[
ξ∂x +

n∑
l=1

ϕl∂ul
+

n∑
l=1

(Dx (ϕl − ξulx) + ξulxx) ∂ulx

]
(uix − fi)

= Dx (ϕi − ξuix) + ξuixx − ξfix −
n∑

l=1

ϕlfiul
= Dx (ϕi − ξuix) + ξDxfi − ξfix −

n∑
l=1

ϕlfiul

= Dx (ϕi − ξuix) + ξ

n∑
l=1

fiul
ulx −

n∑
l=1

ϕlfiul
= Dx (ϕi − ξfi) −

n∑
l=1

(ϕl − ξfl) fiul
= 0.

Hence Dx (ϕi − ξfi) =
n∑

l=1

(ϕl − ξfl) fiul
, that is equivalent to (7), that is compatibility condition

for the system (5), (6) (fit = 0). �

Theorem 2. Let (10) admit n independent symmetry operators Q1, . . . , Qn, where Qj = ξj∂x +
n∑

l=1

ϕlj∂ul
. Then functions P̄ j = ϕ̄j − ξjf̄ form fundamental system of solutions of (8) (gi0 = 0)

and its general solution (compatibility condition of (5), (10)) has a form

Fi =
n∑

j=1

Gj (t, ω1, . . . , ωn) (ϕij − ξjfi) , (11)

where ωi = ωi (x, u1, . . . , un), G1, . . . , Gn are arbitrary smooth functions and substitution of
solution of (10) ui = Ui (x, C1 (t) , . . . , Cn (t)) in (5), (11) gives following system of ODEs

Ċi =
n∑

j=1

Gj (t, C1, . . . , Cn) gj (C1, . . . , Cn) =
n∑

j=1

GjQj (ωi) |ui=Ui . (12)

Proof. The first assertion of theorem (condition (11)) follows from Theorem 1 and fact, that

Dxωi = ωix +
n∑

l=1

ωiul
ulx = ωix +

n∑
l=1

ωiul
fl = Lωi = 0.

Let us prove (12). By assumption that right-hand side (10) does not vanish anywhere in Ω,
this system has n independent first integrals, hence ū and ω̄ are mutually inverse functions.
Thus, if we substitute ui = ui (x, ω1, . . . , ωn) in (5) and differentiate obtained equalities with
respect to t, then we have the system

n∑
j=1

∂ui

∂ωj
Dtωj =

n∑
j=1

Gj (ϕij − ξjfi). (13)
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det
∥∥∥ ∂ui

∂ωj

∥∥∥ �= 0, because in the opposite case functions u1, . . . , un are linearly dependent and
number of independent first integrals are smaller than n. Thus, system (13) as a system of
linear algebraic equations has the unique solution

Dtω =
∥∥∥∥ ∂ui

∂ωj

∥∥∥∥
−1 n∑

j=1

GjPj .

According to inverse function theorem,
∥∥∥ ∂ui

∂ωj

∥∥∥−1
=

∥∥∥ ∂ωi
∂uj

∥∥∥ and consequently this solution can
be rewritten component-wise as follows:

Dtωi =
n∑

j=1

Gj

n∑
l=1

(ϕlj − ξjfl) ωiul
=

n∑
j=1

Gj

n∑
l=1

(ϕljωiul
− ξjflωiul

)

=
n∑

j=1

Gj

(
n∑

l=1

ϕljωiul
+ ξjωix

)
=

n∑
j=1

GjQj (ωi). (14)

The same result we obtain by immediate differentiating ωi (x, u1, . . . , un) with respect to t
in consideration of (11). Taking into account, that DxDtωi = DtDxωi = 0, we conclude that
right-hand side of (14) does not depend on x explicitly. After that, to complete proof, we change
u1, . . . , un for U1, . . . , Un taking into account, that

Ci (t) = ωi (x, U1 , . . . , Un) , Ċi = Dtωi (x, U1, . . . , Un) . �

Thus, we formulate the following algorithm for constructing of classes of conditionally invari-
ant systems of evolution equations and their reduction to systems of ODEs:

• calculate symmetry algebra of equation (10);

• find its first integrals;

• integrate (10) (if (10) admit n-parametric solvable symmetry algebra then it can be inte-
grated in quadratures [10]);

• determine Fi by formula (11);

• write system of ODEs (12) for functions C1 (t) , . . . , Cn (t).

3 Classification and reduction of equations (2)

Now we go to the problem classification of equations (2), which are conditionally invariant under
condition (3). First we consider auxiliary systems

ut = F (t, x, u, v, w) , vt = G (t, x, u, v, w) , wt = H (t, x, u, v, w) ; (15)
ux = v, vx = w, wx = f (t, x, u, v, w) . (16)

Note, that system (16) is equivalent (3). Compatibility condition of the given system is

Fx + vFu + wFv + fFw = G, Gx + vGu + wGv + fGw = H,

Hx + vHu + wHv + fHw = ft + fuF + fvG + fwH.

First integrals of systems (16) are functionally independent solutions of the equation

ωix + vωiu + wωiv + fωiw = 0.
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If (15), (16) is compatible, then F , G, H satisfy the system

Fη = G, Gη = H, Hη = ft + fuF + fvG + fwH,

that is equivalent equation

Fηηη − fuxxFηη − fuxFη − fuF = ft. (17)

A solution of linear equation (17) has the form F = F g + F p, where F p is a partial solution
of equation (17) and

F g = G1p1 + G2p2 + G3p3, Gj = Gj (t, ω1, ω2, ω3) , pj = pj (η, ω1, ω2, ω3)

is the general solution of corresponding homogeneous equation.
Thus, having solved (17) we obtain in the explicit form the function F , for which sys-

tem (2), (3) is compatible. According to theorem, proved in [4], substitution of ansatz which is
a solution of equation (3), into (2), reduces (2) to a system of three ODEs.

Assertion analogous to Theorem 2 can be formulated for equations

ut = F
(
t, x, u, u(1), . . . , u(n−1)

)
, (18)

u(n) = f
(
x, u, u(1), . . . , u(n−1)

)
, (19)

where u(i) = ∂iu
∂xi , F ∈ Cn+1 (Ω), f ∈ C1 (Ω), Ω ⊂ R

n+1, u = u (x, t) ∈ Cn+1 (Ω′), Ω′ ⊂ R
2.

Theorem 3. Let ω1, . . . , ωn be first integrals and Q1, . . . , Qn be independent symmetry operators
of equations (19): Qj = ξj (x, u) ∂x + ϕj (x, u) ∂u. If

F =
n∑

j=1

Gj (t, ω1, . . . , ωn) (ϕj − ξjux), (20)

Gj are arbitrary sufficiently smooth functions, then system (18), (19) is compatible and substi-
tution of general solution (19) u=U (x, C1(t) , . . . , Cn(t)) in (18) reduces it to system of ODEs

Ċi =
n∑

j=1

Gj (t, C1, . . . , Cn) gj (C1, . . . , Cn) =
n∑

j=1

GjPr(n−1)Qj (ωi) |u=U .

Proof follows from the fact that if Q is symmetry operator of (19), then Pr(n−1)Q
∣∣
u(i)=ui

is
symmetry operator of system

u1x = u2, u2x = u3, . . . , unx = f (x, u1, . . . , un) , where u1 = u.

We apply obtained result for classification and reduction equations (2) under additional condition

uxxx = f (x, u, ux, uxx) . (21)

It is well-known that solution of third order ODE admitting three-parametrical solvable
symmetry group can be constructed in quadratures. Using normal forms of ODEs (21), which
admit three-parametrical solvable symmetry algebrae, we constructed (by formula (20)) nine
classes of evolution equations (2) that are conditionally invariant under these types of (21). We
also reduced obtained classes of evolution equations to system of three ODEs. Here we do not
adduce these results, as they is cumbersome. This problem will be considered in further papers.
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4 Examples of reduction of systems of evolution equations

Consider system

ut = F (t, x, u, v, ux, vx) , vt = G (t, x, u, v, ux, vx) (22)

under additional conditions

uxx = f (x, u, v, ux, vx) , vxx = g (x, u, v, ux, vx) . (23)

We apply described procedure and obtain following system for determining functions F , G

Fηη − fuxFη − fvxGη − fuF − fvG = 0, Gηη − guxFη − gvxGη − guF − gvG = 0.

Theorem 4. Let ωj = ωj (x, u, v, ux, vx) are first integrals and

Qj = ξj (x, u, v) ∂x + ϕj (x, u, v) ∂u + ψj (x, u, v) ∂v

are independent symmetry operators of system (23), j = 1, 4. If

F =
4∑

j=1

Rj (t, ω1, . . . , ω4) (ϕj − ξjux) , G =
4∑

j=1

Rj (t, ω1, . . . , ω4) (ψj − ξjvx) ,

Rj are arbitrary twice continuously-differentiable function, then system (22), (23) is compatible
and substituting of solutions of (23) u = U (x, C1 (t) , . . . , C4 (t)), v = V (x, C1 (t) , . . . , C4 (t))
into (22) reduces it to system of four ODE

Ċi =
4∑

j=1

Rj (t, C1, . . . , C4) gj (C1, . . . , C4) =
4∑

j=1

RjPr(1)Qj (ωi) |u=U,v=V , i = 1, 4.

Proof of Theorem 4 is analogous to proof of Theorem 3 ((23) can be changed into equivalent
first-order system).

Remark 1. For a system (4), (23) compatibility condition is

F =
4∑

j=1

Rj (t, ω1, . . . , ω4) (ϕj − ξjux) − f (x, u, v, ux, vx) ,

G =
4∑

j=1

Rj (t, ω1, . . . , ω4) (ψj − ξjvx) + g (x, u, v, ux, vx) .

There are more than sixty nonequivalent classes of systems (23) with four dimensional sol-
vable symmetry algebras. Here we give some examples of application of exposed algorithm to
construction and reduction of classes of systems (4). We write systems (23), their symmetries,
general solutions and first integrals, functions F , G and reduced systems.

1. uxx = ξ′′ (x) ln vx + f (x) , vxx = g′ (x) vx,

Q1 = ∂u, Q2 = ∂v, Q3 = x∂u, Q4 = ξ (x) ∂u + v∂v,

u = lnC1 (t) ξ (x) +
∫ x∫ z (

ξ′′ (y) g (y) + f (y)
)
dydz + C3 (t) x + C4 (t) ,
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v = C1 (t)
∫ x

eg(y)dy + C2 (t) , ω1 = vxe−g(x), ω2 = v − ω1

∫ x

eg(y)dy,

ω3 = ux − ξ′ (x) (ln vx − g (x)) −
∫ x (

ξ′′ (y) g (y) + f (y)
)
dy,

ω4 = u − xω3 − ξ (x) (ln vx − g (x)) −
∫ x∫ z (

ξ′′ (y) g (y) + f (y)
)
dydz,

F = ξ (x) R4 + xR3 + R1 − ξ′′ (x) ln vx − f (x) , G = vR4 + R2 + g′ (x) vx,

Ċ1 = C1R4, Ċ2 = C2R4 + R2, Ċ3 = R3, Ċ4 = R1.

2. uxx = x−1fx (vx) + x−1 lnxg (vx) , vxx = x−1g (vx) ,

Q1 = ∂u, Q2 = ∂v, Q3 = x∂u, Q4 = x∂x + (u + v) ∂u + v∂v,

u =
1

C1 (t)

∫ C1(t)x∫ z f
(
H−1 (y)

)
+ ln yg

(
H−1 (y)

)
y

dydz − lnC1 (t)
C1 (t)

∫ C1(t)x

H−1 (y) dy

+ C3 (t) x + C4 (t) , v =
1

C1 (t)

∫ C1(t)x

H−1 (y) dy + C2 (t) , H (y) = e
∫ y dz

g(z) ,

ω1 =
H (vx)

x
, ω2 = v − 1

ω1

∫ H(vx)

H−1 (y) dy,

ω3 = ux −
∫ H(vx) f

(
H−1 (y)

)
+ ln yg

(
H−1 (y)

)
y

dy +
ln (H (vx))

x
vx,

ω4 = u − xω3 − x

H (vx)

∫ H(vx)∫ z f
(
H−1 (y)

)
+ ln yg

(
H−1 (y)

)
y

dydz

+
x

F (vx)
ln

(
H (vx)

x

)∫ H(vx)

F−1 (y) dy,

F = (u + v − xux) R4 + xR3 + R1 − x−1fx (vx) + x−1 lnxg (vx) ,

G = (v − xvx) R4 + R2 + x−1g (vx) ,

Ċ1 = −C1R3, Ċ2 = C2R4 + R2, Ċ3 = R3, Ċ4 = (C2 + C4) R4 + R1.

In conclusion we note, that Theorem 4 can be easy generalized for classification and reduction
of system of evolution equations

uit = Fi

(
t, x, u1, . . . , un, u

(1)
1 , . . . , u1

n, . . . , u
(k−1)
1 , . . . , u(k−1)

n

)
under additional conditions

u
(k)
i = fi

(
x, u1, . . . , un, u

(1)
1 , . . . , u1

n, . . . , u
(k−1)
1 , . . . , u(k−1)

n

)
,

admitting kn independent symmetries. Here u
(j)
i = ∂jui

∂xj .
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