
Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 364–371

Integrable Hamiltonian Systems

via Quasigraded Lie Algebras

Taras V. SKRYPNYK

Bogoliubov Institute for Theoretical Physics, 14-b Metrologichna Str., Kyiv 03143, Ukraine
E-mail: tskrypnyk@imath.kiev.ua

In the present paper we construct integrable Hamiltonian systems of the Euler–Arnold type
associated with infinite-dimensional quasigraded Lie algebras of matrix valued functions on
higher genus curves. In details is considered the case when underlying matrix Lie algebra
coincide with gl(n). Corresponding generalizations of Steklov integrable systems as long as
gl(n) analogues of Clebsh integrable systems are obtained.

1 Introduction

The main purpose of the present paper is to construct new integrable Hamiltonian systems of
the Euler–Arnold type. Our approach to the solution of this problem is based on the usage of
infinite-dimensional Lie algebras. Traditionally Lie theoretical explanation of the integrability of
Euler–Arnold equations on finite-dimensional Lie algebras is based on on the loop algebras and
Kostant–Adler scheme [1, 2]. In the papers [3, 4] it was shown, that in similar way integrable
Euler–Arnold equations on the algebra so(3) and some its extensions could be obtained from
the infinite-dimensional Lie algebras of the special elliptic functions with the values in so(3). In
our previous papers [5, 6] we generalized construction described in [4] for the case of classical
matrix algebras of higher ranks. Growth of the rank of algebra requires automatic growth of
the genus of the curve. In the result we have obtained algebras of gl(n)-, so(n)- and sp(n)-
valued functions on the algebraic curves of higher genus. The most important property of the
discovered algebras is that they admit Kostant–Adler scheme, and hence, could be used to
construct new integrable systems. Using them we have constructed new integrable Hamiltonian
systems on the Lie algebras so(n)⊕so(n), so(n)+so(n), e(n) that generalize integrable systems
of Steklov–Veselov, Steklov–Liapunov, and Clebsh [5, 6, 7].

In the present paper we consider the case when underlying matrix Lie algebra coincides with
g = gl(n). We show that there exist precise integrable gl(n)-analogues of Steklov–Veselov and
Steklov–Liapunov systems on gl(n)⊕gl(n), gl(n)+gl(n) along with gl(n) analogue of the Clebsh
system on gl(n − 1) + R

2n. It is necessary to notice that same results are valid for the case of
g = sp(n). We do not adduce them here due to the restricted size of the article.

2 Quasi-graded algebras on higher genus curves

2.1 Construction

1. Higher genus curve embedded in C
n. Let us consider in the space C

n with the coordinates
w1, w2, . . . , wn the following system of quadrics:

w2
i − w2

j = aj − ai, i, j = 1, n, (1)
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where ai are arbitrary complex numbers. Rank of this system is n − 1, so substitution:

w2
i = w − ai, y =

n∏
i=1

wi, y2 =
n∏

i=1

w2
i

solves these equations and defines the equation of the hyperelliptic curve H.
2. Classical Lie algebras. Let g denotes one of the classical matrix Lie algebras gl(n), so(n)

and sp(n) over the field of the complex numbers. We will need explicit form of their bases. Let
Ii,j ∈ Mat (n, C) be a matrix defined as:

(Iij)ab = δiaδjb.

Evidently, a basis in the algebra gl(n) could be built from the matrices Xij ≡ Iij , i, j ∈ 1, . . . , n.
The commutation relations in gl(n) will have the standard form:

[Xi,j , Xk,l] = δk,jXi,l − δi,lXk,j .

The basis in the algebra so(n) could be chosen as: Xij ≡ Iij − Ii,j , i, j ∈ 1, . . . , n, with “skew-
symmetry” property Xij = −Xji and the following commutation relations:

[Xi,j , Xk,l] = δk,jXi,l − δi,lXk,j + δj,lXk,i − δk,iXj,l.

The basis in the algebra sp(n) we choose as Xij = Iij − εiεjI−i,−j , |i|, |j| ∈ 1, . . . , n, with the
property Xi,j = −εiεjX−j,−i, where εj = sign j and commutation relations:

[Xi,j , Xk,l] = δk,jXi,l − δi,lXk,j + εiεj(δj,−lXk,−i − δk,−iX−j,l).

3. Algebras on the curve. For the basic elements Xij of all three algebras gl(n), so(n) and sp(n)
and arbitrary n ∈ Z we introduce the following algebra-valued functions on the curve H, or to
be more precise on its ramified covering:

Xn
ij = Xij ⊗ wnwiwj .

The next theorem holds true:

Theorem 1. (i) Elements Xn
ij form n ∈ Z quasi-graded Lie algebra g̃H with the following

commutation relations:

1) [Xn
ij , X

m
kl ] = δkjX

n+m+1
il − δilX

n+m+1
kj + aiδilX

n+m
kj − ajδkjX

n+m
il for the gl(n); (2a)

2) [Xn
ij , X

m
kl ] = δkjX

n+m+1
il − δilX

n+m+1
kj + δjlX

n+m+1
ki − δikX

n+m+1
jl

+ aiδilX
n+m
kj − ajδkjX

n+m
il + aiδikX

n+m
jl − ajδjlX

n+m
ki for the so(n); (2b)

3) [Xn
ij , X

m
kl ] = δkjX

n+m+1
il − δilX

n+m+1
kj + εiεj

(
δj−lX

n+m+1
k−i − δi−kX

n+m+1
j−l

)
+ aiδilX

n+m
kj − ajδkjX

n+m
il + aiεiεj

(
aiδi−kX

n+m
j−l − ajδj−lX

n+m
k−i

)
for the sp(n). (2c)

(ii) Algebra g̃H as a linear space admits a decomposition into the direct sum of two subalgebras:
g̃H = g̃+

H + g̃−H, where subalgebras g̃+
H and g̃−H are generated by the elements X0

ij, and X−1
ij

correspondingly.

Example 1. Let g = so(3). In this case putting Xk ≡ εijkXij , we obtain the following commu-
tation relations:

[Xn
i , Xm

j ] = εijkX
n+m+1
k + εijkakX

n+m
k .

Remark 1. From the item (i) of the theorem it follows that in the rational degeneration, i.e.
when ai = 0, g̃H = g̃, where g̃ is an ordinary loop algebra.
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2.2 Coadjoint representation

To define the coadjoint representation we have to define g̃∗H. For our purposes it will be conve-
nient to identify g̃∗H with g̃H as linear spaces. In order to do this we will define pairing between
L(w) ∈ g̃∗H and X(w) ∈ g̃H in the following way:

〈X(w), L(w)〉f = cn res
w=0

y−2(w)(X(w)|L(w)), (3)

where f(w) is arbitrary function on the curve H. It is easy to show that element dual to X−m
ij

with respect to this pairing is Y m
ij ≡ (X−m

ij )∗ = wm−1y2(w)
wiwj

X∗
ij . Hence the general element of the

dual space has the following form:

L(w) =
∑
m∈Z

n∑
i,j=1

l
(m)
ij

wm−1y2(w)
wiwj

X∗
ij . (4)

Coadjoint action of algebra g̃H on its dual space g̃∗H coincides with commutator:

ad∗
X(w)L(w) = [L(w), X(w)]. (5)

From the explicit form of coadjoint action (5) follows the next statement:

Proposition 1. Functions Ik
m(L(w)) = res

w=0
w−m−1 Tr L(w)k, where m ∈ Z, are invariants of

coadjoint representation.

3 Integrable systems from hyperelliptic algebras

3.1 Poisson structures and Poisson subspaces

1. First Lie–Poisson structure. In the space g̃∗H we can define Lie–Poisson brackets using
introduced above pairing (3). It defines brackets on P (g̃∗H) in the following way:

{F (L), G(L)} =
∑

l,m∈Z

n∑
i,j,p,s=1

〈L(w), [X−l
ij , X−m

ps ]〉 ∂G

∂l
(l)
ij

∂F

∂l
(m)
ps

. (6)

From the Proposition 1 follows the next statement:

Proposition 2. Functions Ik
m(L(w)) are central for brackets { , }.

Let us explicitly calculate Poisson brackets (6). Taking into account that l
(m)
ij = 〈L(w), X−m

ij 〉,
it is easy to show, that for the coordinate functions l

(m)
ij these brackets have the following form:

1)
{

l
(n)
ij , l

(m)
kl

}
= δkjl

(n+m−1)
il − δill

(n+m−1)
kj + aiδill

(n+m)
kj − ajδkjl

(n+m)
il for the gl(n); (7a)

2)
{

l
(n)
ij , l

(m)
kl

}
= δkjl

(n+m−1)
il − δill

(n+m−1)
kj + δjll

(n+m−1)
ki − δikl

(n+m−1)
jl

+ aiδill
(n+m)
kj − ajδkjl

(n+m)
il + aiδikl

(n+m)
jl − ajδjll

(n+m)
ki for the so(n); (7b)

3)
{

l
(n)
ij , l

(m)
kl

}
= δkjl

(n+m−1)
il − δill

(n+m−1)
kj + εiεj

(
δj−ll

(n+m−1)
k−i − δi−kl

(n+m−1)
j−l

)
+ aiδill

(n+m)
kj − ajδkjl

(n+m)
il + εiεj

(
aiδi−kl

(n+m)
j−l − ajδj−ll

(n+m)
k−i

)
for the sp(n). (7c)
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2. Second Lie–Poisson structure. Let us introduce into the space g̃∗H new Poisson brackets
{ , }0, which are a Lie–Poisson brackets for the algebra g̃0

H, where g̃0
H = g̃−H � g̃+

H. Explicitly,
this brackets have the following form:

{l(n)
ij , l

(m)
kl }0 = −{l(n)

ij , l
(m)
kl }, n, m ∈ Z+, {l(n)

ij , l
(m)
kl }0 = {l(n)

ij , l
(m)
kl }, n, m ∈ Z− ∪ 0,

{l(n)
ij , l

(m)
kl }0 = 0, m ∈ Z− ∪ 0, n ∈ Z+ or n ∈ Z− ∪ 0, m ∈ Z+.

Let subspace Ms,p ⊂ g̃∗H be defined as follows:

Ms,p =
p∑

m=−s+1

(g̃∗H)m.

Brackets { , }0 could be correctly restricted to Ms,p. It follows from the next proposition:

Proposition 3. Subspaces Jp,s =
−p−1∑

m=−∞
(g̃H)m +

∞∑
m=s

(g̃H)m are ideals in g̃0
H.

3.2 Algebras of integrals and Hamiltonian equations

To construct integrable Hamiltonian systems we need a large family of mutually commuting
functions (integrals of motion). It is provided by the following theorem:

Theorem 2. Let functions {Ik
m(L)} be defined as in Proposition 1. Their restriction to Ms,p

generate commutative algebra with respect to the restriction of the brackets { , }0 on Ms,p.

Dynamical equations we will consider here are Hamiltonian equations of the form:

dl
(k)
ij

dt
=

{
l
(k)
ij , H

(
l
(m)
kl

)}
0
, (8)

where Hamiltonian H is one of the functions Ik
m or their linear combination. These equations

could be written in the form of Lax type equations [2]:

dL(w)
dt

= PMs,p([L(w), M(w)]), (9)

where PMs,p denotes operator that project dual space onto subspace Ms,p L(w) ∈ Ms,p, and
second operator is defined as follows: M(w) = (P− − P+)∇H(L(w)). Here P± are projection
operators on the subalgebra g̃±H,

∇H(L(w)) =
s−1∑

k=−p

n∑
ij=1

∂H

∂l
(k)
ij

X−k
ij (10)

is an algebra-valued gradient of H.
Thus we have constructed Hamiltonian systems possessing (Theorem 2) a lot of mutually

commuting integrals of motion. In the next section we will consider examples of such systems.

4 Integrable systems in finite-dimensional quotients

The most interesting from the physical point of view examples usually arise in the spaces Ms,p

with small s and p. We will assume, that curve H is nondegenerated, i.e. ai �= aj for i �= j.
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4.1 Generalized gl(n) tops

Let us consider subspace M0,1. It is evident that M0,1 = (g̃+
H/J1,0)∗ = g∗. Corresponding Lax

operator L(w) ∈ M0,1 has the following form:

L(w) =
∑

i,j=1,k

l
(1)
ij

y2(w)
wiwj

X∗
ij .

Let us consider the case g = gl(n). In this case we have: X∗
ij = Xji. Lie–Poisson brackets

between the coordinate functions lij ≡ l
(1)
ij have standard form:

{lij , lkl} = δkjlil − δillkj .

Commuting integrals are constructed using expansions in the powers of w of the functions:
Ik(w) = Tr (L(w))k. We are especially interested in the quadratic Hamiltonians. Let

h(w) ≡ I2(w) =
2n−2∑
s=0

hs(lij)ws =
∑
ij

 ∏
k �=i,j

(w − ak)2

 lijlji.

We obtain:

h0 =

(
n∏

k=1

a2
k

)
n∑

i,j=1

lijlji
aiaj

,

h1 = −
(

n∏
k=1

a2
k

)
n∑

i,j=1

(
2

n∑
k=1

a−1
k −

(
a−1

i + a−1
j

))
lijlji
aiaj

,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−3 = −
n∑

i,j=1

(
2

n∑
k=1

ak − (ai + aj)

)
lijlji,

h2n−2 =
n∑

i,j=1

lijlji.

Last function in this set is a Casimir function, previous 2n − 3 define nontrivial flows on
each coadjoint orbit in g∗. For the Hamiltonian of the generalized gl(n) rigid body we can take
H(lij) ≡ 1/2hn−1(lij) or H(lij) ≡ 1/2h0(lij). They are transformed to the standard Hamiltonian
of the Euler top in the case n = 3 after reduction to so(n) subalgebra.

4.2 Generalized gl(n − 1) Clebsh systems

Let us consider subspace M1,0. Corresponding Lax matrix L(w) ∈ M1,0 has the following form:

L(w) = w−1
∑

i,j=1,n

l
(0)
ij

y2(w)
wiwj

Xji.

In the space M1,0 Poisson structure { , } has the following form:{
l
(0)
ij , l

(0)
kl

}
= aiδill

(0)
kj − ajδkjl

(0)
il . (11)
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The Lie algebraic structure that is defined by these brackets strongly depends on the constants ai.
Let us consider the case of the simplest “degeneration” an → 0, ai �= 0, where i < n. In this
case we will have the following commutation relations:{

l
(0)
ij , l

(0)
kl

}
= aiδill

(0)
kj − ajδkjl

(0)
il ,

{
l
(0)
ij , l

(0)
kn

}
= −ajδkjl

(0)
in ,

{
l
(0)
ij , l

(0)
nk

}
= aiδikl

(0)
nj ,{

l
(0)
in , l

(0)
jn

}
=

{
l
(0)
ni , l

(0)
nj

}
=

{
l
(0)
ij , l(0)

nn

}
= 0,

{
l
(0)
in , l

(0)
nj

}
= aiδijl

(0)
nn ,

where i, j, k < n. Making the following change of the variables:

lij =
l
(0)
ij

bibj
, xk =

l
(0)
kn

bk
, yk =

l
(0)
nk

bk
, z = l(0)

nn , where bi = a
1/2
i , i, j, k < n (12)

we obtain commutation relations for the Lie algebra gl(n − 1) + H2n+1:

{lij , lkl} = δillkj − δkjlil, {xi, yj} = z, {lij , xk} = −δkjxi,

{lij , yk} = δikyk, {xi, xj} = {yi, yj} = {lij , z} = 0,

where H2n+1 is a Heisenberg algebra in the space R
2n+1. It is evident, that z is a central element

in this algebra, so we can put z = 0. Corresponding Poisson algebra will coincide with semi-
direct sum gl(n − 1) + R

2n. We will call corresponding integrable Hamiltonian system “gl(n)
Clebsh system”.

Let us calculate commuting integrals of the gl(n) Clebsh system. They are constructed using
expansions in the powers of w of the functions: Hk(w) = Tr(L(w))k. Let us calculate explicitly
second order integrals:

h(w) ≡ H2(w) =
2n−4∑
s=−2

hs

(
l
(0)
ij

)
ws = w−2

∑
i,j=1,n

 ∏
k �=i,j

(w − ak)2

 l
(0)
ij l

(0)
ji .

It is not difficult to notice that in the case an �= 0, Hamiltonians have essentially the same form
as in the previous example of the generalized tops (modulo the shift the indices hk → hk−2 and
replacing of variables: lij → l

(0)
ij ). Let us now calculate these Hamiltonians in the limit an → 0,

z → 0. Taking into account coordinate transformation (12) we obtain:

h−2 = 2

(
n−1∏
k=1

a2
k

)
n−1∑
k=1

xkyk,

h−1 = (−1)

(
n−1∏
k=1

a2
k

)  n−1∑
i,j=1

(
lijlji − 2a−1

i xiyi

) − h0

 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−5 = (−1)

 n−1∑
i,j=1

(ai + aj)aiajlijlji + 2a2
i xiyi

 − 2

(
n−1∑
k=1

ak

)
h2n−4,

h2n−4 =

 n−1∑
i,j=1

aiajlijlji + 2aixiyi

 .

Function h−2 is a Casimir function. For the Hamiltonian of the Clebsh system one can take, for
example, h−1 or h2n−4. They are transformed to the standard integrals of the Clebsh system in
the case n = 3 after reduction to so(n) subalgebra.
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4.3 Generalized interacting gl(n) tops

Let us consider subspace M1,1. In the case ai �= 0, as it follows from the explicit form of
the brackets given below, M1,1 = (g ⊕ g)∗. Corresponding Lax operator L(w) ∈ M1,1 has the
following form:

L(w) =
n∑

i,j=1

(
w−1l

(0)
ij + l

(1)
ij

) y2(w)
wiwj

X∗
ij .

In the of gl(n) case we may put X∗
ij = Xji. Lie–Poisson brackets between the coordinate

functions l
(1)
ij are the following:{

l
(0)
ij , l

(0)
kl

}
= −aiδill

(0)
kj + ajδkjl

(0)
il ,

{
l
(1)
ij , l

(1)
kl

}
= δkjl

(1)
il − δill

(1)
kj ,

{
l
(0)
ij , l

(1)
kl

}
= 0.

Putting bi = a
1/2
i and making the change of variables: lij = l

(1)
ij , mij =

l
(0)
ij

bibj
, we obtain canonical

coordinates of the direct sum of two algebras gl(n):

{mi,j , mk,l} = δkjmil − δilmkj , {lij , lkl} = δkjlil − δillkj , {lij , mkl} = 0.

Commuting integrals are constructed using expansion in the powers of w of the functions:
Ik(w) = Tr (L(w))k. We are interested in the quadratic integrals:

h(w) ≡ I2(w) =
2n−2∑
s=−2

hs

(
l
(1)
ij

)
ws =

∑
ij

 ∏
k �=i,j

(w − ak)2

 (
l
(0)
ij + wl

(1)
ij

)2
.

By direct calculations making the described above change of variables we obtain:

h−2 =
(
b4
1b

4
2 · · · b4

n

) n∑
i,j=1

mijmji,

h−1 = − (
b4
1b

4
2 · · · b4

n

)  n∑
i,j=1

2
∑

k=1,n

b−2
k −

(
b−2
i + b−2

j

) mijmji − 2b−1
i b−1

j mijlji

 ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−3 = −
 n∑

i,j=1

(
2

n∑
k=1

b2
k − (

b2
i + b2

j

))
lijlji − 2bibjmijlji

 ,

h2n−2 =
n∑

i,j=1

lijlji.

It is evident that functions h−2 and h2n−2 are invariants. For the Hamiltonian of the generalized
interacting rigid bodies we can take either hn−1 or h1. Operator M and Lax equations for these
Hamiltonians are calculated using formulas (9), (10).

4.4 Steklov–Liapunov system on gl(n) + gl(n)

Let us consider subspace M0,2 = (g̃+
H/J2,0)∗. It is easy to show that M0,2 = (g + g)∗. Corre-

sponding Lax operator L(w) ∈ M0,2 has the following form:

L(w) =
n∑

i,j=1

(
l
(1)
ij + wl

(2)
ij

) y2(w)
wiwj

X∗
ij .
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We will again be concentrated on g = gl(n) case and put X∗
ij = Xji. Lie–Poisson brackets

between coordinate functions are the following:{
l
(1)
ij , l

(1)
kl

}
= δkjl

(1)
il − δill

(1)
kj + aiδill

(2)
kj − ajδkjl

(2)
il ,{

l
(1)
ij , l

(2)
kl

}
= δkjl

(2)
il − δill

(2)
kj ,

{
l
(2)
ij , l

(2)
kl

}
= 0.

Change of variables: l
(1)
ij = lij − aipij , l

(2)
ij = pij transforms described above brackets to the

standard brackets on the semi-direct sum gl(n) + gl(n):

{lij , lkl} = δkjlil − δillkj , {lij , pkl} = δkjpil − δilpkj , {pij , pkl} = 0.

Commuting integrals are constructed using expansion in the powers of w of the functions:
Ik(w) = Tr (L(w))k. We are again interested mainly in quadratic integrals:

h(w) ≡ I2(w) =
2n−2∑
s=0

hs+2

(
l
(1)
ij

)
ws = w2

∑
ij

 ∏
k �=i,j

(w − ak)2

 (
l
(1)
ij + wl

(2)
ij

)2
.

By direct calculations, making the described above change of variables we obtain the following
set of Hamiltonians:

h0 =
(
a2

1a
2
2 · · · a2

n

) n∑
i,j=1

(lij − aipij)(lji − ajpji)
aiaj

,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

h2n−1 = (−1)

(
2

n∑
k=1

ak

)
n∑

i,j=1

pijpji + 2lijpji,

h2n =
n∑

i,j=1

pijpji.

Last two functions are invariant functions. If we choose function H = h0 for the Hamiltonian
function we obtain precise gl(n) generalization of Steklov–Liapunov system.
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