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Jacobson Generators of (Quantum) sl(n + 1|m).
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A description of the quantum superalgebra Uq[sl(n + 1|m)] and hence (at q = 1) of the spe-
cial linear superalgebra sl(n + 1|m) via a new set of generators, called Jacobson generators,
is given. It provides an alternative to the canonical description of Uq[sl(n+1|m)] in terms of
Chevalley generators. The Jacobson generators satisfy three linear supercommutation rela-
tions and define Uq[sl(n + 1|m)] as a deformed Lie supertriple system. Fock representations
are constructed and the action of the Jacobson generators on the Fock basis is written down.
The Jacobson generators and the Fock representations allow for an interpretation in terms
of quantum statistics, and the properties of the underlying statistics are shortly discussed.

1 Introduction

The Lie superalgebra sl(n + 1|m) is one of the basic classical simple Lie superalgebras in Kac’s
classification [1]. It can be considered as the superanalogue of the special linear Lie algebra
sl(n + 1). The quantum superalgebra Uq[sl(n + 1|m)] is a Hopf superalgebra deformation of the
universal enveloping superalgebra U [sl(n + 1|m)] of sl(n + 1|m).

Usually, Uq[sl(n + 1|m)] is defined by its Chevalley generators ei, fi, hi, i = 1, . . . , n + m,
subject to the Cartan–Kac relations and the Serre relations [2, 3, 4]. Beside these defining
relations, also the other Hopf superalgebra maps (comultiplication, co-unit and antipode) are
part of the definition. In the present talk, however, we do not use these other Hopf superalgebra
maps; so we shall concentrate on Uq[sl(n + 1|m)] as an associative superalgebra.

The definition in terms of Chevalley generators has the advantage that the comultiplication,
co-unit and antipode are easy to give. Furthermore, certain representations can be constructed
explicitly (e.g. for the essentially typical representations a Gelfand–Zetlin basis exist for which
the action of the Chevalley generators is known [5]). Having certain physical applications in
mind, however, it is sometimes more useful to work with a different set of generators for Uq[sl(n+
1|m)].

The different set of generators for Uq[sl(n + 1|m)] given here are the Jacobson generators
(JGs) (denoted by a+

i , a−i and Hi, with i = 1, . . . , n + m). For the case of sl(n + 1), such
generators were originally introduced by Jacobson [6, 7]. The use of Jacobson generators has
a number of advantages.

First of all, in certain applications it is necessary to have a complete basis of Uq[sl(n + 1|m)]
(following from the Poincaré–Birkhoff–Witt theorem). Such a basis is given in terms of the
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Cartan–Weyl elements. Although it is possible to express all Cartan–Weyl elements in terms of
the Chevalley generators, such expressions soon become rather unmanageable. In terms of the
Jacobson generators, the description of all Cartan–Weyl elements is very easy.

Secondly, the Jacobson generators allow for the definition of a simple class of representations,
the Fock representations of Uq[sl(n+1|m)]. In these representations, the Jacobson generators a+

i

and a−i share certain properties with ordinary creation and annihilation operators.
A disadvantage of the Jacobson generators compared to the Chevalley generators is that

the explicit expressions for the other Hopf (super)algebra maps (comultiplication, co-unit and
antipode) become very lengthy and complicated.

In Section 2 we define the Jacobson generators of Uq[sl(n + 1|m)] as a special subset of the
Cartan–Weyl elements. The description of all Cartan–Weyl elements in terms of the Jacobson
generators becomes very simple. In order to apply these results (e.g. in representations) one
must have a list of all (super)commutation relations between these Cartan–Weyl elements; in
terms of Jacobson generators, this means one has to determine certain triple relations. These
are given in Theorem 2. In Section 3 we define Fock representations for Uq[sl(n + 1|m)], related
to the Jacobson generators. The Fock representations are labeled by a number p; when p is
a nonnegative integer, the Fock representation is finite-dimensional. These representations are
further analyzed. Following conditions required in a physical context, it is determined when
these Fock representations are unitary, see Theorem 4. In that case, an orthonormal basis of
the Fock space is given, together with the action of the Jacobson generators on these basis
elements. Finally, in Section 4 the Jacobson generators are interpreted as operators creating or
annihilating a “particle”, and the underlying quantum statistics is discussed.

2 Jacobson generators of Uq[sl(n + 1|m)]

The Hopf superalgebra Uq[sl(n + 1|m)] is defined in the sense of Drinfeld [8], as a topologically
free C[[h]] module. As a superalgebra, Uq[sl(n+1|m)] is usually defined by means of its Chevalley
generators, subject to the Cartan–Kac relations and the Serre relations [2, 3, 4]. Here, we present
an alternative description of Uq[sl(n + 1|m)] in terms of the so-called Jacobson generators. The
definition of JGs can be best presented in the framework of a set of Cartan–Weyl elements eij ,
i, j = 0, . . . , n + m of Uq[gl(n + 1|m)] [9]. The elements eij are the q-analogues of the defining
basis of gl(n + 1|m); their grading is given by deg(eij) = θij = θi + θj , where

θi =
{

0̄ if i = 0, . . . , n,
1̄ if i = n + 1, . . . , n + m.

We shall refer to eij as a positive root vector (resp. negative root vector) if i < j (resp. i > j).
For the formulation of the Poincaré–Birkhoff–Witt theorem, it is necessary to fix a total order
for the set of elements eij . Among the positive root vectors, this order is given by

eij < ekl, if i < k or i = k and j < l; (1)

for the negative root vectors eij one takes the same rule (1), and total order is fixed by choosing

positive root vectors < negative root vectors < eii.

The difference between Uq[sl(n + 1|m)] and Uq[gl(n + 1|m)] is in the elements of the Cartan
subalgebra. For Uq[gl(n + 1|m)] the Cartan subalgebra is generated by eii (i = 0, . . . , n + m).
For Uq[sl(n + 1|m)] the Cartan subalgebra is generated by the elements Hi, with

Hi = e00 − (−1)θieii, i = 1, . . . , n + m. (2)
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We will use also the elements Li and L̄i, where

Li = qHi , L̄i = q−Hi , i = 1, . . . , n + m. (3)

The Cartan–Weyl elements of Uq[sl(n+1|m)] are now given by {Hi; i = 1, . . . , n+m}∪{eij ; i �=
j = 0, . . . , n+m}. The complete set of supercommutation relations between these Cartan–Weyl
elements is given by

[Hi, Hj ] = 0; (4)

[Hi, ejk] = (δ0j − δ0k − (−1)θi(δij − δik))ejk; (5)

for two positive root vectors eij < ekl:

[[eij , ekl]]
q
(−1)

θj δjl−(−1)
θj δjk+(−1)θi δik

= δjkeil +
(
q − q−1

)
(−1)θkθ(l > j > k > i)ekjeil; (6)

for two negative root vectors eij > ekl:

[[eij , ekl]]
q
−(−1)

θj δjl+(−1)
θj δjk−(−1)θi δik

= δjkeil −
(
q − q−1

)
(−1)θkθ(i > k > j > l)ekjeil; (7)

and finally for a positive root vector eij and a negative root vector ekl:

[[eij , ekl]] =
δilδjk

q − q−1

(
L

(−1)θi

j L̄
(−1)θi

i − L̄
(−1)θi

j L
(−1)θi

i

)
(8)

+
((

q − q−1
)
θ(j > k > i > l)(−1)θkekjeil − δilθ(j > k)(−1)θklekj + δjkθ(i > l)eil

)
LiL̄k

+ LjL̄l

(
− (

q − q−1
)
θ(k > j > l > i)(−1)θjeilekj − δilθ(k > j)(−1)θijekj + δjkθ(l > i)eil

)
,

where

[a, b]x = ab − xba, {a, b}x = ab + xba, [[a, b]]x = ab − (−1)deg(a) deg(b)xba,

θ(i1 > i2 > . . . > ir) =
{

1, if i1 > i2 > . . . > ir,
0, otherwise.

Define the Jacobson generators of Uq[sl(n + 1|m)] to be the following Cartan–Weyl vectors:

a−i = e0i, a+
i = ei0, Hi, i = 1, . . . , n + m. (9)

Then from (8) one obtains:

[[a−i , a+
j ]] = −(−1)θiLieji, (i < j); [[a−i , a+

j ]] = −(−1)θjejiL̄j , (i > j). (10)

In terms of the JGs the definition of Uq[sl(n + 1|m)] reads

Theorem 1. Uq[sl(n + 1|m)] is a unital associative algebra with generators {Hi, a±i }i=1,...,n+m

and relations

[Hi, Hj ] = 0, [Hi, a
±
j ] = ∓(1 + (−1)θiδij)a±j ,

[[a−i , a+
i ]] =

Li − L̄i

q − q̄
, Li = qHi , L̄i ≡ L−1

i = q−Hi , q̄ ≡ q−1,

[[[[aη
i , a

−η
i+ξ]], a

η
k]]qξ(1+(−1)θi δik) = ηθkδk,i+ξL

−ξη
k aη

i ,

[[aξ
1, a

ξ
2]]q = 0, [[aξ

1, a
ξ
1]] = 0, ξ, η = ± or ± 1. (11)
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The set of relations (11) is the minimal one defining the algebra Uq[sl(n + 1|m)]. This
description of Uq[sl(n + 1|m)] (resp. sl(n + 1|m)) is somewhat similar to the Lie triple system
description of Lie algebras, initiated by Jacobson [6, 7] and generalized to Lie superalgebras by
Okubo [10]. Therefore we have defined Uq[sl(n + 1|m)] (resp. sl(n + 1|m)) as a (deformed) Lie
supertriple system.

In order to be able to reorder the Cartan–Weyl elements, which appear when computing the
transformations of the Fock spaces, it is convenient to write down all triple relations between
the JGs (which certainly follow from the relations (11)).

Theorem 2. A set of Cartan–Weyl elements of Uq[sl(n + 1|m)] is given by Hi, a±i , [[a+
i , a−j ]]

(i �= j = 1, . . . , n + m). A complete set of supercommutation relations between these elements is
given by:

[Hi, Hj ] = 0; [Hi, a
±
j ] = ∓(1 + (−1)θiδij)a±j ; (12)

[[a−i , a+
i ]] =

Li − L̄i

q − q−1
; (13)

[[aη
i , a

η
j ]]q = 0 (i < j); (a±i )2 = 0 (i = n + 1, . . . , n + m); (14)

[[[[aη
i , a

−η
j ]], aη

k]]qξ(1+(−1)θi δik) = ηθjδjkL
−ξη
k aη

i + (−1)θkε(j, k, i)(q − q̄)[[aη
k, a

−η
j ]]aη

i

= ηθjδjkL
−ξη
k aη

i + (−1)θkθj ε(j, k, i)qξ(q − q̄)aη
i [[a

η
k, a

−η
j ]], (15)

where (j − i)ξ > 0, ξ, η = ± and

ε(j, k, i) =




1, if j > k > i;
−1, if j < k < i;

0, otherwise,

and we have used the notation q̄ = q−1.

3 Fock representations

We construct the Fock modules using the induced module procedure. G = Uq[sl(n + 1|m)],
with Cartan–Weyl elements Hi, a±i and [[a+

i , a−j ]] (i �= j = 1, . . . , n + m), has a subalgebra
A = Uq[gl(n|m)] with Cartan–Weyl elements Hi and [[a+

i , a−j ]] (i �= j = 1, . . . , n + m). Define
a trivial one-dimensional A module as follows:

[[a−i , a+
j ]]|0〉 = 0, (i �= j = 1, . . . , n + m), (16)

Hi|0〉 = p|0〉, (17)

where p is any complex number. Let P be the (associative) subalgebra of G = Uq[sl(n + 1|m)]
generated by the elements of A and {a−i ; i = 1, . . . , n + m}. The one-dimensional module C|0〉
can be extended to a one-dimensional P module by requiring:

a−i |0〉 = 0, i = 1, . . . , n + m. (18)

Now the G module W̄p is defined as

W̄p = IndG
P C|0〉.

Clearly W̄p is freely generated by the generators a+
i (i = 1, . . . , n + m) acting on |0〉. Therefore

a basis for W̄p is given by

|p; r1, r2, . . . , rn+m〉 ≡ (a+
1 )r1(a+

2 )r2 · · · (a+
n )rn(a+

n+1)
rn+1(a+

n+2)
rn+2 · · · (a+

n+m)rn+m |0〉, (19)

where ri ∈ Z+ for i = 1, . . . , n and ri ∈ {0, 1} for i = n + 1, . . . , n + m.
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Theorem 3. The transformation of the basis (19) of W̄p under the action of the JGs reads:

Hi|p; r1, r2, . . . , rn+m〉 =


p − (−1)θiri −

n+m∑
j=1

rj


 |p; r1, r2, . . . , rn+m〉, (20)

a−i |p; r1, r2, . . . , rn+m〉 = (−1)θ1r1+θ2r2+···+θi−1ri−1qr1+···+ri−1 [ri]


p −

n+m∑
j=1

rj + 1




× |p; r1, r2, . . . , ri−1, ri − 1, ri+1, . . . , rn+m〉, (21)

a+
i |p; r1, r2, . . . , rn+m〉 = (−1)θ1r1+θ2r2+···+θi−1ri−1 q̄r1+···+ri−1(1 − θiri)

× |p; r1, r2, . . . , ri−1, ri + 1, ri+1, . . . , rn+m〉, (22)

where i = 1, . . . , n + m.

Proof. We sketch the proof. Equation (20) is an immediate consequence of [Hi, a
+
j ] = −(1 +

(−1)θiδij)a+
j , which is one of the last relations in (12). Also the action of a+

i on the basis
vectors is easy: (22) follows directly from (14). The proof of (21) follows from the following
relations [11]:

• [[A, B1B2 · · ·Bi−1BiBi+1 · · ·Bj ]]qb1+b2+···+bj

=
j∑

i=1

qb1+b2+···+bi−1(−1)α(β1+···+βi−1)B1B2 · · ·Bi−1[[A, Bi]]qbi Bi+1 · · ·Bj ,

where α = deg(A) and βi = deg(Bi); (23)

• [[a−i , (a+
j )r]] =




q̄2r − 1
q̄2 − 1

(a+
j )r−1[[a−i , a+

j ]] when i < j,

q2r − 1
q2 − 1

(a+
j )r−1[[a−i , a+

j ]] when i > j;
(24)

• [[a−i , (a+
i )r]] =

(a+
i )r−1

q − q̄

(
q̄2r − 1
q̄2 − 1

Li − q2r − 1
q2 − 1

L̄i

)
; (25)

• [[[[a−i , a+
j ]], (a+

i )r]]qr = −(−1)θj
q̄2r − 1
q̄2 − 1

L̄ia
+
j (a+

i )r−1, i > j, (26)

• [[[[a−i , a+
j ]], (a+

k )r]]qr = (−1)θj (q2r − 1)a+
j (a+

k )r−1[[a−i , a+
k ]], i > k > j, (27)

• [[a−i , a+
1 ]](a+

2 )r2 · · · (a+
n+m)rn+m |0〉

= −(−1)θ1+θ2r2+θ3r3+···+θi−1ri−1q2r2+···+2ri−1+ri+···+rn+m−p[ri]

× a+
1 (a+

2 )r2 . . . (a+
i−1)

ri−1(a+
i )ri−1(a+

i+1)
ri+1 · · · (a+

n+m)rn+m |0〉, i > 1. (28)

�

The action of the elements Hi and a±i (i = 1, . . . , n+m) on the basis vectors of W̄p, determined
in Theorem 3, imply that W̄p has an invariant submodule when p is a nonnegative integer. From
now on we shall assume that p ∈ Z+. Then we have

Corollary 1. The Uq[sl(n+1|m)] module W̄p has an invariant submodule Vp with basis vectors

|p; r1, r2, . . . , rn+m〉, with
n+m∑
i=1

ri > p.
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The quotient module Wp = W̄p/Vp is an irreducible representation for Uq[sl(n+1|m)]. The basis
vectors of Wp are given by (the representatives of)

|p; r1, r2, . . . , rn+m〉, with
n+m∑
i=1

ri ≤ p. (29)

Now we select a class of Fock modules important for physical applications. These are the
ones for which the standard Fock metric is positive definite, and for which the representatives
of a±i and Hi (i = 1, . . . , n + m) satisfy the Hermiticity conditions:

(a+
i )† = a−i , (a−i )† = a+

i , (Hi)† = Hi. (30)

For the Fock representation Wp, we can define a Hermitian form ( , ) by requiring

(|0〉 , |0〉) = 〈0|0〉 = 1, (31)

and by postulating that the Hermiticity conditions (30) should be satisfied, i.e.

(a±i v, w) = (v, a∓i w), ∀ v, w ∈ Wp. (32)

Then any two vectors |p; r1, r2, . . . , rn+m〉 and |p; r′1, r′2, . . . , r′n+m〉 with (r1, r2, . . . , rn+m) �=
(r′1, r′2, . . . , r′n+m) are orthogonal and

(|p; r1, r2, . . . , rn+m〉, |p; r1, r2, . . . , rn+m〉) =
[p]!

[p − R]!

n+m∏
i=1

[ri]! =
[p]!

[p − R]!

n∏
i=1

[ri]!, (33)

where R = r1 + r2 + · · · + rn+m. The straightforward computations show that Hermiticity
conditions hold if q is a phase, i.e.

q = eiφ (−π < φ < π). (34)

Let us now further investigate when the Hermitian form ( , ) is an inner product. This means
that for every (r1, . . . , rn+m) with 0 ≤ R ≤ p, the value in (33) should be positive. In particular,
this implies that all the numbers

[p], [p − 1], [p − 2], . . . , [2], [1]

should be positive. However, since q = eiφ is a phase, we have

[k] =
qk − q−k

q − q−1
=

sin(kφ)
sin(φ)

.

The common domain where all functions

sin(2φ)
sin(φ)

,
sin(3φ)
sin(φ)

, . . . ,
sin(pφ)
sin(φ)

are positive is

−π

p
< φ <

π

p
.

Thus we have

Theorem 4. The irreducible Fock module Wp (p ≥ 2) is unitary if and only if q is a phase, i.e.
q = eiφ, with −π

p < φ < π
p .
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Observe that whether q is a root of unity or not does not have any effect on the irreducibility
or unitarity of the Fock module Wp, as long as the conditions of Theorem 4 are satisfied. Indeed,
suppose that q = eiφ is a root of unity with φ a rational multiple of π and −π

p < φ < π
p . Then the

smallest integer N for which qN = −1 is greater than p. As a consequence, the rhs in (33) is never
zero. This implies that there are no singular vectors among the weight vectors |p; r1, . . . , rn+m〉,
and thus irreducibility holds.

Under the conditions of Theorem 4, we can define an orthonormal basis of Wp :

|p; r1, r2, . . . , rn+m) =

√√√√√ [p −
n+m∑
l=1

rl]!

[p]![r1]! · · · [rn+m]!
|p; r1, r2, . . . , rn+m〉, (35)

where 0 ≤
n+m∑
l=1

rl ≤ p. In the new basis (35) the transformation formulas (20)–(22) read

(i = 1, . . . , n + m):

Hi|p; r1, r2, . . . , rn+m) =


p − (−1)θiri −

n+m∑
j=1

rj


 |p; r1, r2, . . . , rn+m), (36)

a−i |p; r1, . . . , rn+m) = (−1)θ1r1+···+θi−1ri−1

× qr1+···+ri−1

√√√√[ri]

[
p −

n+m∑
l=1

rl + 1

]
|p; r1, . . . , ri−1, ri − 1, ri+1, . . . , rn+m), (37)

a+
i |p; r1, . . . , rn+m) = (−1)θ1r1+···+θi−1ri−1 q̄r1+···+ri−1(1 − θiri)

×
√√√√[ri + 1]

[
p −

n+m∑
l=1

rl

]
|p; r1, . . . , ri−1, ri + 1, ri+1, . . . , rn+m). (38)

4 Properties of the underlying statistics

In the present section we indicate that each Uq[sl(n + 1|m)] module Wp can be considered as
a state space, where a+

i (resp. a−i ) can be interpreted as operators creating (resp. annihilating)
“particles” with, say, energy εi. To this end consider a “free” Hamiltonian

H =
n+m∑
i=1

εieii. (39)

Then

[H, a±i ] = ±εia
±
i . (40)

This result together with equations (37)–(38) allows one to interpret a+
i as an operator creating

a particle with energy εi, or more precisely, creating a particle on the i-th orbital. The ope-
rator a−i annihilates a particle with energy εi, or equivalently annihilates a particle on the
i-th orbital. On every orbital i with i = n + 1, . . . , n + m there cannot be more than one
particle since (a+

i )2 = 0 for i = n + 1, . . . , n + m, whereas such a restriction does not hold
for the first n orbitals. These are Fermi like (resp. Bose like) properties. There is however
one essential difference. If the corresponding Fock module is characterized by p then no more

than p “particles” can be accommodated in the system,
n+m∑
i=1

ri ≤ p. Hence the number of
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particles that can be accommodated on a given orbital, keeping the number of particles on all
other orbitals fixed, depends on how many particles have already been accommodated in the

system. If
n+m∑
i=1

ri < p the particles behave similar to bosons and fermions, but are neither bosons

nor fermions since the maximum number of the particles in the system cannot exceed p. This
condition together with the restrictions for the orbitals with i = n+1, . . . , n+m is the analogue
of the Pauli principle for this statistics.
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