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A typical and effective way to construct a higher dimensional integrable equation is to extend
the Lax pair for a (1 + 1) dimensional equation known as integrable to higher dimensions.
Here we construct an alternative modified KdV equation in (2+1) dimensions by the higher-
dimensional extension of a Lax pair. And it is shown that this higher dimensional modified
KdV equation passes the Painlevé test (WTC method).

1 Introduction

A central and so active topic in the theory of integrable systems is to construct as many higher
dimensional integrable systems as possible. The Lax representation is a powerful tool for con-
structing integrable equations in (2 + 1) dimensions. In this paper we will derive a (2 + 1)
dimensional equation of the modified KdV (mKdV) equation. Let us first recall here that the
mKdV equation in (1 + 1) dimensions reads

vt +
1
4
vxxx +

3
2
v2vx = 0. (1)

Higher dimensional integrable equations are not usually unique, in the sense that there exist
several equations that reduce to a given one under dimensional reduction. It is widely known,
for instance, that
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and

vt +
1
4
vxxx +

3
4
vx∂−1

z

{
v

(
∂−1

z vx

)
x

}
+

3
4

(
∂−1

z vx

) (
v∂−1

z vx

)
x
− 3

4
vx

(
∂−1

z vx

)2 = 0 (3)

are the higher-dimensional mKdV equations [1, 2, 3]. It is easy to check equation (2) and (3) are
reduced to equation (1), setting z = x. Our goal in this paper is to add into them an alternative
one derived from the higher-dimensional extension of a Lax pair.

It is well-known that the Lax representation [4] describes (1 + 1) dimensional integrable
equations as follows. Consider two operators L and T which are called the Lax pair and given
by

L = L0 − λ, (4)
T = ∂x(L0) + T ′

0 + ∂t, (5)

with λ being a spectral parameter independent upon t. Then the commutator

[L, T ] = 0 (6)
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contains a nonlinear evolution equation for suitably chosen L and T . Equation (6) is so-called
the Lax equation. For example if we take

L0 = LmKdV = ∂2
x + 2σv∂x, (7)

T ′
0 = T ′

mKdV = σv∂2
x −

(
3
2
v2 +

1
2
σvx

)
∂x, (8)

with σ = ±i, then LmKdV and T ′
mKdV satisfy the Lax equation (6) provided that v(x, t) satisfies

the mKdV equation (1). By operator LmKdV1 (7), the mKdV equation (1) can be extended to
the higher-dimensional ones (2) and (3). In this paper we will extend the mKdV equation (1)
to an alternative (2 + 1) dimensional one by taking a different L0 operator

L0 = ∂2
x + v∂x +

1
4
v2 +

1
2
vx. (9)

This paper is organised as follows. In Section 2, we shall begin with verifying a different L0

operator (9) gives the mKdV equation in (1+1) dimensions. In the process, we use the Painlevé
test. Next an alternative mKdV equation in (2 + 1) dimensions is introduced by the extension
of T operator of the Lax pair. In this process, we also need to perform the Painlevé test.
Section 5 contains our summary.

2 The modified KdV equation

In this section, let us show the mKdV equation (1) can be constructed by the operator L0

L0 = LmKdV′ = ∂2
x + v∂x +

1
4
v2 +

1
2
vx. (10)

The Lax pair (4) and (5) are given by

L = LmKdV′ − λ, (11)
T = ∂x(LmKdV′) + T ′

mKdV′ + ∂t, (12)

where T ′
mKdV′ is an unknown operator. And then the Lax equation (6) gives

[LmKdV′ − λ, ∂x(LmKdV′) + ∂t] + [LmKdV′ − λ, T ′
mKdV′ ] = 0. (13)

The first term in the left-hand side of equation (13) gives

[LmKdV′ − λ, ∂x(LmKdV′) + ∂t] = −vx∂3
x −

(
3
2
vvx +

1
2
vxx

)
∂2

x

−
(

3
2
v2
x +

3
4
v2vx +

1
2
vxx + vt

)
∂x +

(
3
4
vxvxx +

1
2
vvxxx + · · ·

)
, (14)

where note that ∂x(LmKdV′) = ∂3
x + v∂2

x +
(

1
4v2 + 3

2vx

)
∂x + 1

2vvx + 1
2vxx. So we choose here the

form of the operator T ′
mKdV′ so that it involves, at least, a second-order differential operator,

T ′
mKdV′ = U∂2

x + V ∂x + W, (15)

where U , V and W are functions of x and t. Then the second term in the left-hand side of
equation (13) gives

[LmKdV′ − λ, T ′
mKdV′)] = 2Ux∂3

x + (Uxx + 2Vx + vUx − 2Uvx) ∂2
x

+ (Vxx + 2Wx + vVx − V vx − Uvvx − 2Uvxx) ∂x + (Wxx + vWx + · · · ) . (16)
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By comparing the first term (14) to the second one (16),

U =
v

2
, (17)

V =
v2

2
, (18)

2Wx = vt +
1
2
vvxx +

1
2
v2
x +

3
4
v2vx (19)

and

Wxx + vWx +
3
4
vxvxx +

1
2
vvxxx + · · · = 0, (20)

where equation (20) is an identity by U , V and Wx. The exact forms of U and V have obtained
and one of W has not yet.

Now let us get it by applying the Painlevé test in the sense of Weiss–Tabor–Carnevale (WTC)
method [5]. For that, let us compute the degree of variables in equation (19). Equation (19)
demands that, if taking [∂x] = 1,

[v] = 1, (21)
[∂t] = 3, (22)
[Wx] = 4, (23)

where [∗] means the degree of a variable ∗. These degrees lead us to take as unknown function Wx

−2Wx = αvxxx + βvvxx + γv2
x + δv2vx, (24)

where α, β, γ and δ are real constants. Equation (19) reads

vt + αvxxx +
(

β +
1
2

)
vvxx +

(
γ +

1
2

)
v2
x +

(
δ +

3
4

)
v2vx. (25)

Now we show four constants in equation (25) are obtained such as passing the Painlevé test
(WTC method). The solution to equation (1) has the form

v ∼ v0φ
η. (26)

Here φ is single valued about an arbitrary movable singular manifold. In η is a negative integer
(leading order). By using leading order analysis, we obtain

η = −1. (27)

Substituting

v(x, t) =
∑
j=0

vj(x, t)φ(x, t)j−1 (28)

leads to the resonances, after trivial algebra,

j = −1, 3, 4, (29)

in the condition

β = γ = −1
2
. (30)
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To simplify the calculations, we use the reduced manifold ansatz of Kruskal:

φ(x, t) = x + ρ(t), (31)
vj(x, t) = vj(t). (32)

The resonance j = −1 in (29) corresponds to the arbitrary singularity manifold φ. We used
MATHEMATICA to handle the computation for the existence of arbitrary functions correspond-
ing to the resonances except j = −1. We find that v3 and v4 are arbitrary for equation (25).
Thus the general solution v to equation (25) admits the sufficient number of arbitrary functions,
thus passing the Painlevé test with the condition (30). Then equation (25) is reduced to the
mKdV equation

vt + αvxxx +
(

δ +
3
4

)
v2vx = 0, (33)

where α and δ are still arbitrary. Hereafter let us choose

α =
1
4

and δ =
3
4
. (34)

This choice, of course, is meaningless. From condition (30) and (34), W and T ′
mKdV′ are given,

respectively, by

W = −1
8
vxx +

1
4
vvx − 1

8
v3, (35)

T ′
mKdV′ =

1
2
v∂2

x +
1
2
v2∂x − 1

8
vxx +

1
4
vvx − 1

8
v3. (36)

Namely it has been shown that the operator LmKdV′ can give the mKdV equation (1) by the
Lax equation (6) and the Painlevé test.

3 An extension the modified KdV equation
to (2 + 1) dimensions

It is well known that the Lax differential operator plays a key role in constructing higher dimen-
sional equations from lower dimensional ones. We extend only T operator to (2 + 1) dimensions
as follows [1, 6, 7]

T = ∂z(LmKdV′) + T̃mKdV′ + ∂t. (37)

Here z is a new spatial coordinate. Then the Lax pair is given by

L = LmKdV′ − λ, (38)

T = ∂z (LmKdV′) + T̃mKdV′ + ∂t, (39)

where note that ∂z(LmKdV′) = ∂2
x∂z + v∂x∂z + vz∂x +

(
1
4v2 + 1

2vx

)
∂z + 1

2vvz + 1
2vxz and T̃mKdV′

is an unknown operator. So we obtain

[LmKdV′ − λ, ∂z(LmKdV′) + ∂t] + [LmKdV′ − λ, T̃mKdV′ ] = 0, (40)

from the Lax equation (6) of the pair (38) and (39). The first term in the left-hand side of
equation (40) gives

[LmKdV′ − λ, ∂z(LmKdV′) + ∂t] = −vz∂
3
x −

(
3
2
vvz +

1
2
vxz

)
∂2

x

−
(

3
2
vxvz +

3
4
v2vz +

1
2
vxz + vt

)
∂x +

(
3
4
vxvxz +

1
2
vvxxz + · · ·

)
. (41)
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As in (1 + 1) dimensions, we assume the form of the operator T̃mKdV′

T̃mKdV′ = U∂2
x + V ∂x + W, (42)

where U , V and W are functions of x, z and t. Then the second term in the left-hand side of
equation (40) gives

[LmKdV′ − λ, T̃mKdV′)] = 2Ux∂3
x + (Uxx + 2Vx + vUx − 2Uvx) ∂2

x

+ (Vxx + 2Wx + vVx − V vx − Uvvx − 2Uvxx) ∂x + (Wxx + vWx + · · · ) . (43)

By comparing the first term (41) to the second one (43),

U =
1
2
∂−1

x vz, (44)

V =
1
2
v

(
∂−1

x vz

)
, (45)

2Wx = vt +
1
4
v2vz +

1
2
vvx

(
∂−1

x vz

)
+

1
2
vxvz +

1
2
vxx

(
∂−1

x vz

)
(46)

and

Wxx + vWx +
3
4
vxvxz +

1
2
vvxxz + · · · = 0, (47)

where equation (47) is an identity by U , V and Wx. The exact forms of U and V have obtained
and one of W has not yet as in (1 + 1) dimensions.

Let us compute the degree of variables in equation (46), if taking [∂x] = 1,

[v] = 1, (48)
[∂t] = 2 + [∂z], (49)
[Wx] = 3 + [∂z], (50)

with [∂z] being arbitrary. These degrees lead us to take as unknown function Wx

−2Wx = avxxz + bvxx

(
∂−1

x vz

)
+ cvvxz + dvxvz

+ evvx

(
∂−1

x vz

)
+ fv2vz + gv3

(
∂−1

x vz

)
, (51)

where all from a to g is real constant. Substituting Wx into equation (46) gives

vt + avxxz +
(

b +
1
2

)
vxx

(
∂−1

x vz

)
+ cvvxz +

(
d +

1
2

)
vxvz

+
(

e +
1
2

)
vvx

(
∂−1

x vz

)
+

(
f +

1
4

)
v2vz + gv3

(
∂−1

x vz

)
= 0. (52)

Here we perform the Painlevé test for equation (52) to get real constants in it. For that, we
need to rewrite equation (52) for taking away the term of ∂−1

x . That exact form, however, is
very complicated for writing down here. We would like to write down the result. That is,

leading order : − 1 (53)
resonances : − 1, 1, 3, 4 (54)

real constants : b = d = −1
2
, c = g = 0, (55)

and other constants are arbitrary.
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Thus equation (52) gives

vt +
1
4
vxxz +

(
1
2

+ e

)
vvx

(
∂−1

x vz

)
+ (1 − e) v2vz = 0, (56)

where we take a = 1
4 and f = 3

4 − e for being reduced to the mKdV equation (1) setting z = x.
This equation (56) is quite different from the higher dimensional mKdV equation (2) and (3).

That is, the alternative mKdV equation (56) in (2 + 1) dimensions was given by the Lax
equation (6) and the Painlevé test.

4 Summary

A natural problem in the integrable systems is whether we can find new (2 + 1) dimensional
integrable equations from already known (1+1) dimensional integrable ones. The Lax represen-
tation is a powerful tool to do so. The method used in this paper is based on works by Calogero
et al.

Our results in this paper are as follows.

(i) The (1 + 1) dimensional mKdV equation (1) has been obtained by the Lax pair

L = ∂2
x + v∂x +

1
4
v2 +

1
2
vx − λ, (57)

T = ∂3
x +

3
2
v∂2

x +
(

3
4
v2 +

3
2
vx

)
∂x +

3
4
vvx +

3
8
vxx − 1

8
v3 + ∂t. (58)

(ii) By extending the Lax pair (57) and (58) to (2 + 1) dimensions, the higher dimensional
mKdV equation (56) has been introduced. And then the Lax pair is given by

L = ∂2
x + v∂x +

1
4
v2 +

1
2
vx − λ, (59)

T = ∂2
x∂z +

1
2

(
∂−1

x vz

)
∂2

x + v∂x∂z +
(

vz +
1
2
v∂−1

x vz

)
∂x +

(
1
4
v2 +

1
2
vx

)
∂z +

3
8
vxz

+
1
4
vx∂−1

x vz +
1
2
vvz − e

4
v2∂−1

x vz +
(

3e

4
− 3

8

)
∂−1

(
v2vz

)
+ ∂t (60)

This equation is integrable in the sense of the existence of the Lax pair and passing the
Painlevé test.

Next let us mention our further works.

(i) The higher dimensional mKdV equations (2) and (3) have various exact solutions (soliton
solution and so on) [2, 3]. They constructed via Bilinear approach or Hirota method. We
have not been able to constructed exact solutions to equation (56) yet.

(ii) We will extend the Lax pair (57) and (58) to (2+1) dimensions by using other method [7, 8].

We believe that higher dimensional integrable equations can be obtained from lower dimen-
sional integrable ones by extending the Lax pairs to higher dimensions. We have a dream such
as constructing (3 + 1) dimensional integrable equations (if there exist). Further study on this
topic continues.
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