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The explicit and exact solutions of the linear homogeneous difference equation with initial
conditions (Cauchy problem) are constructed. The approach is quite general and relies on
a novel and successful treatment of the linear recursion appropriately cast in matrix form.
Our approach is exploited to solve the eigenvalues problem of a special set of non-Hermitian
operators. A new class of generalized even and odd coherent states of a quantum harmonic
oscillator are defined.

The occurrence of linear or nonlinear difference equations is ubiquitous in applied sciences.
The exact treatment of many important problem in physics, chemistry, biology, economy, psy-
chology and so on, depend on our ability to solve recursive relations of various kind. The
importance of this particular chapter of mathematics may be for instance appreciated taking
into account the close relation existing between difference and differential equations. Systema-
tic methods for approximating intractable ordinary or partial differential equations by easier-to
manage appropriate difference equations, are currently and successfully used in many contexts
of applied sciences [1, 2, 3]. By definition a nth-order linear discrete Cauchy problem consists
of a linear normal nth-order difference equation associated to given initial conditions. It is well
known that when the vectors of the initial conditions defining n different discrete Cauchy prob-
lems relative to the same nth-order recursive equation are independent, then the n corresponding
solutions constitute a fundamental set of solutions. In this paper we construct the explicit and
exact solution of the following discrete Cauchy problems

yk+n = f1(k)yk+n−1 + · · · + fn−1(k)yk+1 + fn(k)yk,

y0 = y1 = y2 = · · · = yk−1 = 0, yk = 1, yk+1 = yk+2 = · · · = yn−1 = 0, (1)

where fi : S → R ∀ i = 1, 2, . . . , n and fn(k) �= 0 ∀ k ∈ S = {0, 1, 2, . . .}. Our treatment is
new and leads to a resolutive formula whose usefulness is vividly illustrated by an application
to the physics of the quantum harmonic oscillator. To this end we transform equation (1) into
the following homogeneous, linear, matrix, first order equation

Zk+1 = A(k)Zk, k = 0, 1, 2, . . . (2)

with A(k) n × n matrix defined by A1j = δjn, A
(k)
21 = fn(k), A

(k)
2j = fj−1(k) (j = 2, . . . , n),

Arj = δr−1,j for r = 3, . . . , n and

ZT
k = (yk yk+n−1 · · · yk+1), (3)

where superscript T denotes the transposition of column vector Zk. Its formal solution has the
form

Zk = P (k)Z0, (4)
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where P (0) = I and P (k) = A(k−1)A(k−2) · · ·A(0), k ≥ 1. It is easy to verify that P
(0)
1j = δ1j ,

P
(1)
1j = δnj and, for any k > 1

P
(k)
1j =

∑
h0,h1,...,hk−2

A
(k−1)
1hk−2

A
(k−2)
hk−2hk−1

· · ·A(1)
h1h0

A
(0)
h0j , (5)

where hi (i = 0, 1, . . . , k−2) runs from 1 to n. Consider first 1 ≤ k ≤ n−1. In this case, in view
of equation (5), P

(k)
1j does not vanish only if k = n−j +1. In fact only this condition ensures the

existence of a not vanishing contribution to P
(k)
1j in the form of the following product of matrix

elements

A
(k−1)
1n A

(k−2)
nn−1 · · ·A(k+j−n−1)

j+1j = 1. (6)

Thus we arrive at the conclusion that P
(k)
1j = δn+1−k,j . Moreover P

(n)
1j = A

(0)
2j and P

(n+1)
1j =

A
(0)
2j A

(1)
22 + (1 − δ1,j)A

(1)
2j+1 provided we consistently put A

(k)
2 n+1 ≡ A

(k)
21 . Observe that

∑
h0,h1,...,hk−2

A
(k−1)
1hk−2

A
(k−2)
hk−2hk−1

· · ·A(1)
h1h0

A
(0)
h0j =

∑
h0,h1,...,hk−n−1

A
(k−n)
2hk−n−1

· · ·A(1)
h1h0

A
(0)
h0j , (7)

where the n − 1 indices hk−2, hk−1, . . . , hk−n have been eliminated with the help of relations
essentially similar to that expressed by equation (6). The expression (5) for P

(k)
1j with k > n+1

and j = 1, 2, . . . , n, may be put in the following form

P
(k)
1j =

r∗∑
r=j

(δ1,r + ϑ(j − 1))A(r−j)
2r

∑
hr−j+1,...,hk−n−1

A
(k−n)
2hk−n−1

· · ·A(r−j+1)
hr−j+12 + fn(k, j), (8)

where

fn(k, j) = (1 − δ1,j)(1 − ϑ(k − 2n + j − 2))

×
[
(1 − δk−n,n−j+2)A

(k−n)
2j+k−n + A

(k−n)
22 A

(k−n−1)
21 δk−n,n−j+2

]
, (9)

ϑ(x) is the Heaviside step function such that ϑ(0) = 0 and r∗ = min{(n + 1), k + j − n − 2}.
Equation (8) expresses P

(k)
1j in terms of finite sums like

∑
hr−j+1,...,hk−n−1

A
(k−n)
2hk−n−1

· · ·A(r−j+1)
hr−j+12 (10)

which may be further simplified exploiting the structural presence of “1” and “0” in the charac-
teristic matrices

{
A(k)

}
. To this end we note that there are only n not vanishing products of

matrix elements beginning in the second row and ending in the second column:

A
(k−n)
21 A

(k−n−1)
1n · · ·A(k−2n+1)

32 = A
(k−n)
21 ,

A
(k−n)
22 = A

(k−n)
22 ,

A
(k−n)
23 A

(k−n−1)
32 = A

(k−n)
23 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(k−n)
2j A

(k−n−1)
jj−1 · · ·A(k−n)

32 = A
(k−n)
2j ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A
(k−n)
2n A

(k−n−1)
nn−1 · · ·A(k−n)

32 = A
(k−n)
2n . (11)



748 A. Napoli, A. Messina and V. Tretynyk

To take advantage from equation (11) let us introduce the function g : {1, 2, . . . , n} → N × N

defined putting g(1) = (2, 2); g(j) = (2, j + 1), 2 ≤ j ≤ n − 1, (n > 2) and g(n) = (2, 1) which
helps in writing down P

(k)
1j as given by equation (8) in a conveniently irreducible form. In what

follows we shall use the following symbols

A
(p)
g(1) ≡ A

(p)
22 , . . . , A

(p)
g(j) ≡ A

(p)
21 . (12)

Looking at equation (11) we see that the length of the sequence beginning with A
(k−n)
21

(
A

(k−n)
2j

)
(that is the number of factors) is n(j − 1). It is easy to convince oneself that each not vanishing
contribution to the sum expressed by equation (10) may be subdivided into products of sequences
of different length explicitly written down in equation (11). This circumstance provides the key
for defining a useful algorithm to cast P

(k)
1j into an explicit form where only elements of the

second row of the matrices {A(k), k = 1, 2, . . .} are present. For this purpose we find convenient
to put the following definitions. Let h, n and p be positive integers. We say that a sequence of
integers has order h and high n if it is constructed by h eventually repeated positive integers
not exceeding n. A generic sequence of order h and high n is denoted by (r1, . . . , rh)n and the
set of all such sequences by In(h). For each prefixed integer p such that h ≤ p ≤ nh, we say
that (r1, . . . , rh)n ∈ In(h) represents a p−sequence when it satisfies the additional condition to

be also a partition of the integer p, that is
h∑

ν=1
rν = p. A generic p−sequence of order h and

high n is denoted by (r1, . . . , rh)p
n and the certainly not empty subset of all such p-sequences

by Ip
n(h). Finally we put Ip

n =
p⋃

h=1

Ip
n(h), that is Ip

n is the set of all the p-sequences of high n in

correspondence with all the possible orders.
For instance if n = 5 and p = 3, I3

5 has 4 elements: 1+1+1 = 2+1 = 1+2 = 3, and for p = 6
I6
5 has 31 elements: 1+1+1+1+1+1 = 2+1+1+1+1 = 1+2+1+1+1 = · · · = 1+5 = 5+1 = 6. It

is possible to convince oneself that for any k > n+1 and 1 ≤ j ≤ n the expression (10) appearing
in equation (8) may be cast in the following form

∑
(r1,...,rh)p

n∈Ip
n

A
(k−n−r0)
g(r1) A

(
k−n−

1∑
t=0

rt

)
g(r2) · · ·A

(
k−n−

h−1∑
t=0

rt

)

g(rh) , (13)

where r0 = 0 ≤ h ≤ p, p = (k − n) − (r − j).
The important difference between the two expression (10) and (13) is of course that the latter

equation contains only matrix elements of the second rows of the (at most) (k − n) matrices

A(1), A(2), . . . , A(k−n) and therefore is irreducible. We wish to point out that k − n −
h−1∑
t=1

rt >

r − j + 1 as it should be. Inserting equation (13) into equation (8) we are now in position to
write down the definite expression of P

(k)
1j as

δ1,j , k = 0, δn+1−k,j , 1 ≤ k ≤ n, A
(0)
21 , k = n,

A
(0)
2j A

(1)
2j + (1 − δ1j)A

(1)
2j , k = n + 1,

r∗∑
r=j

[δ1,r + ϑ(j − 1)]A(r−j)
2r

×
∑

(r1,...,rh)p
n∈Ip

n

A
(k−n−r0)
g(r1) · · ·A

(
k−n−

h−1∑
t=0

rt

)

g(rh) + fn(k, j), k > n + 1. (14)
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When j runs from 1 to n, P
(k)
1j defines n independent solutions of equation (1). Introduce the

non-hermitian operators

Cn = anei 2π
n

a†a, n = 1, 2, . . . (15)

The eigenstates of C1 are the coherent states and the eigenstates of C2 pertaining to a generic not
null eigenvalue are the even and odd coherent states. The eigenvalue problem for Cn, formulated
to construct generalizations of the even and odd coherent states,

Cn

∞∑
k=0

bk|k〉 = λ
∞∑

k=0

bk|k〉,
∞∑

k=0

|bk|2 < ∞, λ ∈ C \ {0} (16)

may be easily reduced to the resolution of the following linear discrete Cauchy problem:

bk+n = λ

√
k!

(k + n)!
e−i 2π

n
kbk,

bk = 1, b0 = b1 = · · · = bk−1 = bk+1 = · · · = bn−1, (17)

where k runs from 0 to n − 1. The Fock states |0〉, |1〉, . . . , |n − 1〉 are eigenstates of Cn, with
eigenvalue 0. If normalizable solutions of the linear difference equation (17) of order n and
with variable coefficients exist in correspondence to such initial conditions, then, in view of
equation (17), the relative eigensolutions of Cn satisfy the property that the distance between
two successive Fock states of their number representations is fixed and equal to n. Thus the n
different eigenstates of Cn correspond to the n initial conditions, if normalizable, provide possible
generalizations of the even and odd coherent states. We now solve equation (17) exploiting the
formula (14) deduced in this paper. A comparison between equation (17) and (1) yields

A
(k)
21 = λ

√
k!

(k + n)!
e−i 2π

n
k, A

(k)
2j = 0, j = 2, . . . , n. (18)

As a consequence, we immediately deduce that only when the choice g(r1) = g(r2) = · · · =
g(rh) = g(n) is compatible with a prefixed value of p, that is p = nh, the expression (12) does
not vanish. This fact implies that the sum over r appearing in equation (16), contributes for
j = 1 with the (r = 1)-term only and with the (r = n+1)-term only, if j > 1 and k > 2n− j +2.
Thus exploiting equation (16) the general expression of P

(k)
11 in our case may be cast as follows:

P
(k)
11 = A

(h−1)n
21 A

(h−2)n
21 · · ·A(n)

21 A
(0)
21 =

λh√
(hn)!

, ∀ k = hn, h = 1, 2, . . . ,

0, otherwise. (19)

P
(k)
11 is the solution of equation (17) in correspondence to the initial condition b0 = 1, b1 = b2 =

· · · = bn−1 = 0. The corresponding normalized eigenstate of Cn may be written down as

|ψ(n)
0 〉 = N0

∞∑
h=0

λh√
(hn)!

|hn〉, (20)

where

N0 = ne−
1
2
|β|2

{
n + 2

n−1∑
ν=1

(n − ν)e−2|β|2 sin2(π
n

ν) cos
(
|β|2 sin

(
2π

n
ν

))}− 1
2

(21)
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and the relative eigenvalue is of course λ. The solution of equation (17) relative to the initial
condition bn−j+1 = 1, b0 = b1 = · · · = bn−j = bn−j+2 = · · · = bn−1 = 0 for j > 1 is P

(k)
1j and

corresponds to the following eigenstate of Cn

|ψ(n)
k 〉 = Nk

∞∑
h=0

λh√
(hn + k)!

|hn + k〉, k = 0, . . . , n − 2, (22)

where Nk is an appropriate normalization constant explicitly calculable.
It is possible to demonstrate that |ψ(n)

k 〉 can be expressed as linear combination of n equal-
amplitude coherent states. In particular,

(a) |ψ(n)
0 〉 may be represented as the equal right linear combination of all the eigenstates of an

pertaining to the same eigenvalue λ. It therefore generalizes the even coherent state;
(b) |ψ(n)

n
2

〉 (n are even) can also be expanded in terms of the same set of coherent states as
before, with the difference that now the ratio between successive coefficients is −1. Appropriately
adjusting its global phase, we may therefore state that it generalizes the odd coherent state.

In this paper we have derived a new way of representing the general solution of an arbitrary
homogeneous linear difference equation. Our resolutive keys of this problem are two. The first
one is the choice of the fundamental set of solutions used. The second one is the algorithm by
which we succeed to express in the (best possible) closed form the first row of the product of
an arbitrary number of the noncommutating matrices. Our resolutive formula (14) has been
applied to solve the eigenvalue problem of a particular non-Hermitian operator building up
a new class of states of a quantum harmonic oscillator. These states should attract interest in
quantum optician community, for instance, in view of the fact that these generalized even and
odd coherent states might exhibit remarkable non-classical features.

Concluding we wish to emphasize that the material presented in this paper provides a concrete
stimulus toward other interesting applicable developments both in physics and in mathematics.
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