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Symmetries of Integro-Differential Equations
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The Ovsiannikov method of finding Lie symmetries is generalized to the case of point trans-
formations of integro-differential equations. The new method is direct and applicable to
practical cases, for instance to Vlasov–Maxwell equations of plasmas.

1 Introduction

We present a general and direct method of determination of symmetry groups of point trans-
formations for integro-differential equations. The method is a natural generalization of the
Ovsiannikov method for differential equations [1, 2, 3, 4, 5, 6].

We consider a system of integro-differential equations (IDE’s) of the form
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where n, m, k, l are arbitrary natural numbers (l ≤ n), x = (x1, . . . , xn), functions W , F
and f are arbitrary but sufficiently regular to secure the existence of solutions to (1), limits of
integrations (region X) are also arbitrary. The symbol y

m
denotes the set of all partial derivatives

of m-order:
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=
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The equation (1) reduces to a differential equation for f = 0, thus our method contains the
Ovsiannikov method as a particular case.

Earlier approaches to investigations of symmetries of IDE’s can be found in [7], in CRC
Handbook [8], and in references therein. The lack of a general and universal method has led
to many attempts using various methods which often constitute ad hoc means adapted for each
case. For example, specific kinds of IDE’s were chosen so that certain methods could be used
effectively. In [9] the integral term of the IDE has the form of a square root of a differential
operator. The method used there consists in finding a partial differential equation (PDE) with
the space of solutions containing the solutions of the considered IDE. After finding symmetries
of the auxiliary PDE by standard method the symmetries of IDE are found by inspection. In [10]
the IDE with the integral in the form of a Fourier transform is considered. In this case the Lie
derivative is found effectively and used for the determination of symmetries.

Methods called indirect methods form a separate class. They are based on a transformation
of a given set of IDE’s to an equivalent set of auxiliary equations for which symmetries are
known or can be found by known methods. Then symmetries of the initial system of IDE’s
can be reconstructed. Usually, this auxiliary set of equations consists of PDE’s as, for example,
in Taranov’s method [11]. He transformed the Vlasov–Maxwell equations for one-component
plasma into an infinite chain of differential equations for the moments of a distribution function.
Another indirect approach is based on an extension of the Harrison and Estabrook method [12]
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to the case of IDE’s. A given set of equations is transformed to an equivalent set of differential
forms. This method was used in [13] for IDE’s invariant with respect to Galilei, Poincaré,
Schrödinger and conformal groups, in [14] for the Boltzmann equation and in [15, 16] for IDE’s
of Hartree type. These methods are encumbered with the usual burden of indirect methods.
They involve the necessary movement there and back with the crucial problem of equivalence
and an interpretation of results. Moreover, quite often an auxiliary problem is more complicated
than the initial one when our direct method is applied.

A direct method is presented in [5] and in Chapter 5 of Vol.3 of CRC Handbook [8]. It consists
in assuming equal to zero the derivative with respect to the group parameter of a transformed
IDE (depending on the parameter) at zero value of this parameter. When this condition is
properly evaluated, that is when the dependence of limits of an integral on the group parameter
is taken into account, then it leads to our criterion of symmetry of IDE’s (8). However, this
evaluation must be done every time when this condition is used. This may be suitable for a
computer (see [17]) but not for a man. The dependence of limits of an integral (even constant
limits!) on the group parameter is sometimes overlooked in certain papers. Moreover, it is more
appropriate to consider a region of integration since the expression of the n-dimensional integral
by the n-fold integral is not invariant with respect to point transformations. The problem
disappears for Bäcklund symmetries in the form of vertical transformations because there is no
transformation of independent variables in this case. The method was used in [18, 19] for finding
symmetries of the Boltzmann equation of a special kind.

The general and sophisticated method of Vinogradov and Krasilshchik [20, 21] has arisen
from a simple idea of elimination of integrals from IDE’s by virtue of the fundamental theorem
of calculus by further prolongation to nonlocal variables: the primitive functions of dependent
variables. This is natural in the case of IDE’s with variable limits of integrals, for example for
the Volterra type of IDE’s. However, the most important IDE’s in physics, such as equations
of kinetic theory, contain integrals with constant limits. Then, this construction is somewhat
artificial and complicated. The method becomes indirect since it leads to the so called boundary-
differential equations [21]. The method requires advanced and sophisticated mathematics, for
example the theory of coverings of a system of differential equations and the prolongation proce-
dure for boundary–differential equations. The method was used in [22, 23] for finding symmetries
of the coagulation kinetic equation.

Since, in general, an integral structure of equations cannot be transformed into an algebraic
one by admitting nonlocal variables, we stay in a jet space to deal with derivatives, as in the
Ovsiannikov method, and find a new infinitesimal criterion of symmetry in our case of IDE’s.
This criterion is the essence of our direct method.

2 Extension of a group

We look for a Lie symmetry group of point transformations

x̃i = eεGxi = xi + εξi(x, y) + O (
ε2

)
, ỹ = eεGy = y + εη(x, y) + O (

ε2
)
, (2)

with the infinitesimal generator (summation over repeated indices is assumed)

G = ξi(x, y)∂xi + η(x, y)∂y, (3)

admitted by the system of IDE’s (1). As in the Ovsiannikov method we extend the group of
point transformations (2) to a jet space of independent and dependent variables and derivatives
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of dependent variables in the usual way [1, 2, 3, 4, 5, 6]
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where the extended generator is of the form

G(m) = G + ηi∂yi + · · · + ηi1···im∂yi1···im . (5)

The coefficients ηi, . . . , ηi1···im , defining the extended group, are given by the recursion relations:

ηi = Diη − yjDiξ
j ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ηi1···im = Dimηi1···im−1 − yi1···im−1jDimξj (6)

and the total derivative Di is defined as follows

Di = ∂i + yi∂y + yij∂(yj) + · · · + yii1···in∂(yi1···in ) + · · · .

3 Criterion of invariance of integro-differential equations

Invariance of an equation means invariance of the space of its solutions. Thus, point transforma-
tion (2) maps any solution y(x) of the equation (1) into another solution ỹ(x̃) of the equation.
In our geometric language, where solutions y(x) are represented by their graphs in a jet space,
it means that the following implication holds

W (F, I) = 0 =⇒ W (F̃ , Ĩ) = 0, (7)

where I means integral term in (1), F̃ ≡ F (̃·) and Ĩ are obtained by extended transformations (4).
According to the definition (7), we act on the integro-differential equation (1) by extended

transformations (4) writing down explicitly only terms that are linear with respect to the parame-
ter ε. Next, by expanding functions W , F and f in their Taylor series and changing variables
in the integral, we express the change of (1) in terms of the extended generator (5). From the
definition of symmetry (7), this change must be equal to zero for all values of ε. Thus, we obtain
an infinitesimal criterion of invariance of the equation (1).

We restrict our considerations to the one scalar equation of the type (1) for the sake of
simplicity of notation. For a system of equations with p dependent variables y = (y1, . . . , yp)
some minor changes are evident and the resulting criterion is to be applied to each equation of
the system. Expanding the function W in a Taylor series, we obtain

W (F̃ , Ĩ ) = W (F, I) +
∂W

∂F
∆F +

∂W

∂I
∆I + · · · .
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The change ∆F of the differential term of (1) is calculated by expanding the function F in
a Taylor series
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Due to the definition of the extended generator (5) we can rewrite the above result in the form
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Thus, the condition ∆F = 0 leads to the Ovsiannikov infinitesimal criterion of invariance of
differential equation G(m)F (x, y, y
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Let us consider the change of an integral term in the equation (1)
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under the extended transformations (4). To this end, we change variables in the first integral
according to the transformations (4):{
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By virtue of (4) the elements of Jacobi’s matrix are equal

∂x̃i

∂xj
= δij + ε

∂ξi

∂xj
+ O (

ε2
)
, i, j = 1, . . . , l.

Because the off-diagonal elements of the matrix are of the order O (
ε2

)
, thus the linear contri-

bution to the Jacobian comes only from the product of the diagonal elements:

∂
(
x̃1 · · · x̃l

)
∂ (x1 · · ·xl)

=
(

1 + ε
∂ξ1

∂x1

)
· · ·

(
1 + ε

∂ξl

∂xl

)
+ O (

ε2
)

= 1 + ε
l∑

i=1

∂ξi

∂xi
+ O (

ε2
)
.

We do not use the summation convention when summation goes over the range 1, . . . , l ≤ n only.
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Expanding the function f into a Taylor series we obtain
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In view of the definition of the extended generator (5) we can rewrite the above result as follows
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From the calculations performed above we see that the implication (7) leads to the following
infinitesimal criterion of invariance of integro-differential equations of the type (1) under the
point transformations (2):
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]
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For a system of equations of the type (1) we apply the criterion (8) to each equation of the
system as was mentioned earlier. Generalization to the case of more than one integral term
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In the case of W = F + I, which corresponds to our example of the Vlasov–Maxwell equations,
the criterion (8) takes the form

G(m)F +
∫
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[
G(k)f + f
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∂xi

]
= 0 on solutions of (1).

According to the criterion (8) we have to take into account the equation (1), which is now
a constraint on extended variables. Using this equation we can eliminate some of them. Re-
maining variables are essentially independent, thus the equation (8) must be satisfied identically
with respect to them. It means that the coefficients at independent expressions, involving these
variables, must be equal to zero. This leads to the system of the so called determining equations
for the integro-differential equation (1). They are homogeneous and linear integro-differential
equations for coefficients ξi, η determining the generator (3) and the point transformations (2).
In applications, we have additional information in each particular case. Often, this informa-
tion enables us to go to the integrands in integral determining equations by using the Lagrange
lemma of variational calculus [24]. This leads to differential determining equations.

The criterion (8) is a necessary condition for symmetry of the equation (1), so it allows us
to find all possible symmetry transformations of (1). The difficult task to obtain is to find
a sufficient condition of symmetry. To this end we need a theorem on global existence and
uniqueness of the solutions of the equation (1). The latter problem is far from being solved,
see [25]. From a practical point of view the necessary condition is more important and useful than
the sufficient one as the main task is to find symmetry transformations. A possible symmetry
transformation of the equation (1) can be easily verified by inspection and this should be done
anyway.
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4 Symmetries of Vlasov–Maxwell equations

Let us consider the Vlasov–Maxwell system of equations for collisionless, multicomponent, one-
dimensional plasmas with no magnetic field:

∂tfα + u∂xfα +
qα

mα
E∂ufα = 0,

∂tE +
∑
α

qα

ε0

∫ ∞

−∞
du ufα = 0, ∂xE −

∑
α

qα

ε0

∫ ∞

−∞
dufα = 0, (9)

where E = E(t, x) is the x-component of electric vector field E = (E, 0, 0), u is the x-component
of vector velocity v = (u, 0, 0), fα = fα(t, x, u) is the distribution function of α-plasma compo-
nent, qα, mα are charge and mass of α-particles, respectively and ε0 is electric permittivity of
free space.

In this case, the generators (3) of point transformations (2) take the form

G = τ∂t + ξ∂x + ρ∂u +
∑
α

ηα∂fα + ζ∂E . (10)

Using the criterion (8) we obtain
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and the following determining equations (limits ±∞ of integrals are dropped):
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Except for the nonphysical case of a constant charge to mass ratio qα/mα = const we easily
find from the differential determining equations that

0 = ∂uτ = ∂uξ = ∂tηα = ∂xηα = ∂uηα = ∂Eηα = ∂fβ
ηα for α �= β, ζ = λ1E.

Then, the last two integro-differential lead to

0 =
∫

du [fα(u∂uτ −λ1u + ρ + u∂uρ) + uηα], 0 =
∫

du[fα(λ1 − ∂xξ + u∂xτ − ∂uρ) + ηα].

for every α. We assume that the point transformations (2) are analytic functions of the point
(t, x, u, fα). In general, analyticity with respect to the parameter ε and infinite differentiability
with respect to the point is assumed for Lie groups. However, the latter dependence is in fact
also analytic due to a physical interpretation. Expanding ηα(fα) in the Taylor series, using
the generalized mean value theorem and well known special solutions of the Vlasov–Maxwell
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equations (9), that is the stationary solutions depending only on velocity and BGK solutions,
we find that the coefficients ηα can depend on fα only linearly ηα = λ2fα. Thus, we can apply
the Lagrange lemma calculus of variations [24] and obtain differential equations for integrands.

Solutions of the determining equations are given by

τ = −1
3
(λ1 + λ2)t + λ3, ξ =

1
3
(λ1 − 2λ2)x + λ4t + λ5, ρ =

1
3
(2λ1 − λ2)u + λ4,

ηα = λ2fα, ζ = λ1E,

where λ1, . . . , λ5 are arbitrary parameters. Substituting the solutions into (10) and choosing all
parameters equal to zero except one, which is assumed to be equal to 1, in each case, we derive
the following five generators

G1 = ∂t, G2 = ∂x, G3 = t∂x + ∂u,

G4 = −t∂t + x∂x + 2u∂u + 3E∂E , G5 = −t∂t − 2x∂x − u∂u + 3
∑
α

fα∂fα , (11)

which span the Lie algebra of the group of point symmetry transformations of the Vlasov–
Maxwell equations (9). Non-vanishing commutators between these generators are given by

[G1, G3] = G2, [G1, G4] = −G1, [G1, G5] = −G1, [G2, G4] = G2,

[G2, G5] = −2G2, [G3, G4] = 2G3, [G3, G5] = −G3.

The algebra is solvable.
Summing up the Lie series we obtain one-parameter subgroups of the symmetry group of

transformations corresponding to the generators (11). For G1 and G2 we have translations
in time and translations in space respectively. These symmetries follow from the fact, that
coefficients of equation (9) do not depend on time and space variables, and lead to the conser-
vation laws of energy and momentum respectively. For G3 we have Galilean transformations.
The above three kinetic symmetries are obvious as they express the geometric properties of
space-time in nonrelativistic theory. The dynamical symmetries, which depend on details of
interaction, are more interesting. In the case of the Vlasov–Maxwell equations they are gener-
ated by G4 and G5 and have the form of scaling transformations. We can construct a general
symmetry transformation of the Vlasov–Maxwell equation (9) from the above one-parameter
transformations.

Other approaches to the problem of finding symmetries of Vlasov–Maxwell equations can be
found in papers [26, 27, 28] and in Chapter 16 of Vol.2 of CRC Handbook [8].

5 Conclusions

It has been shown that there is no need for a nonlocal extension of a symmetry group in the
case of integro-differential equations. It is sufficient to stay in a jet space as in the case of
differential equations. The generalization of the Ovsiannikov method consists in the change of
the infinitesimal criterion of symmetry. The method has been successfully applied to significant
integro-differential equations. In addition to the Vlasov–Maxwell equations we have also de-
termined the symmetry group of the nonlocal NLS equation for modulated Langmuir waves in
plasmas. In this last case a further generalization of the Ovsiannikov method to equations with
delayed arguments is needed.
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