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Why not Nambu mechanics?

The organization of the talk is as follows.

e Brane evolution as motivation

e Quantum Nambu brackets: Even and Odd
e Odd brackets, especially 3

e Bracket reductions: 4 = 3

e Bracket equivalences

e Solenoidal flow

e Parameterization and interpretation

e Propagators

Classical and quantum Nambu mechanics are discussed in
T Curtright and C Zachos, Phys Rev D68 (2003) 085001.
This paper provides an extensive guide to the literature.

!Back in Miami, we write that as: Brana Evolucién Y Nambu Mecénica



1 Brane motivator

Suppose
dz; =vj [z]dr .

What about
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Nambu mechanics suggests an interesting answer. If
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The “d-brane” of initial data is evolved as a whole by this action.



Note that Nambu flow is always solenoidal?, as is the more familiar Hamiltonian flow.

That is,
0 0
a_zjvj (2] = (9_23 {25, L[z, Ina [2] )y = 0

But, Nambu flow is not necessarily Hamiltonian. (More on this later.)

As the simplest possible example, consider phase-space for a unit mass free particle
on the plane.

Time evolution of this system can be expressed either as Hamiltonian flow, or as
Nambu flow.

2 € T,PsY,Py SO n=4

d
24 = v =z, Hlpy

H=(p2+p)/2

a(zj7L7p$7py)
0 (x, s, Y, Py)

’Uj:

L =xp, — yp,

Then the previous action would describe the evolution of a 2-surface
or “membrane” of phase-space data for this system.

Other classical bracket systems are nearly as transparent.
Although in general, Nambu brackets set different time scales
on different dynamical sectors of a theory.

2A necessary condition for € to be exact is that it be closed. This implies the flow should
be solenoidal, V-v= 0, as &,..;, dv"' [2] A d2"?--- N d2' = g;,..;,0;0"dz? Ndz"--- Ndz' =
% (8-1}3) €y, A2 N2 - Nd2'™ .



As an illustration of dynamical time scales set through Nambu brackets, consider the
two dimensional isotropic oscillator.

The su (2) algebra of the oscillator (as in Schwinger) may be realized by

Jo =3 (Pzpy + 1Y)
Jy =3 +y* - -

Each of these is an invariant under time-evolution as generated by (we have set
m=1/w)

A R B
and they satisfy the usual Poisson brackets

{J:m Jy}pB = ']z s {Jya Jz}pB = ']:c ) {Jza Jx}pB = Jy

Moreover, the square of the 2d SHO Hamiltonian is given by the quadratic Casimir

2
Jo+ 4+ Il =1 (i +p)+ 2+ ) = m*H?



Now there is a simple su (2) bracket identity relating Poisson brackets to Nambu 4-
brackets. It follows from nothing but the PB algebra. For any function A (z,y, p,,py)
on the phase-space of the oscillator

{A 2+ 724 02 =2 x (A Jo, Jyy

Thus evolution through use of this particular 4-bracket corresponds to using the
square of the 2d SHO Hamiltonian.

Evolution using the Hamiltonian to the first power apparently can not be expressed
in terms of quantum 4-brackets by using linear combinations of the J’s. The best
we can do is

2; € X,Dz,Y, Dy so again  n =4.

a (Zju J:w Jyu Jz)
0(x,pz, Yy, Dy)

EZj =v; = %m2 {Zj’HQ}PB

= im2H {2, H}pp

d
= im2H <£zj)



Roughly speaking, for the 2d SHO it is not a simple time derivative that nicely fits
into a Nambu multi-bracket formalism, but rather it is the derivative 0/0 (t/FE) for
fixed energy levels. This can be written as a 4-bracket. That is to say, more
precisely, we need to re-parameterize the time-energy plane by changing coordinates
(t,F) — (r =t/E,F = E?/2). This preserves areas on the time-energy plane (and
therefore maintains the physics associated with time-energy distributions) since

{t/E, E2/2}t’E =1

Constant time curves on the 7 = t/E, F' = E?/2 plane.

More importantly, this parameterization of the time-energy plane dictates that dif-
ferent energy levels evolve according to their own distinct energy-dependent times, as
specified by 7. Since the relation between 7 and t is invertible, for £ # 0, this is not
pathological.



Evolution of SHO extended data and dynamical time scales.

We set m = 1/2 and rescale 7 — 167 to clean up the numerics, to obtain

d 1
EZ =3 {z, H2}PB =H{z, H}py ,

for z = (z,y,ps,py). A representative solution is given by

z(E,7) = VE (cos (E7) +sin (ET)) |

ps (B, 7) = VE (—sin (ET) + cos (ET)) |

as opposed to the usual fixed frequency, standard time evolution:
z(E,t) = VE (cos (t) +sin (1)) ,
pe (E,t) = VE (—sin (t) 4 cos (t)) .

The equivalence map between the single point particle solutions,
as given by the relation 7 = t/F, is evident.



The geometry of a single phase-space trajectory evolved under 7 is indistinguishable
from that of a single trajectory evolved under standard time ¢t. Only the parameter-
ization scale of the curve is different.

X

Evolution of a single phase-space point under the non-trivial action of any
differentiable function of H.

To see the difference between the two forms of evolution, geometrically, we must
compare two or more trajectories.

Extended data involving different energies evolve continuously under 7 in an amusing
way, as indicated in the pictures below.



That is to say, we need to consider the evolution of extended initial data in the
phase-space, i.e. a brane of data. So consider a straight line segment of initial (z, p,)
points, and evolve the entire segment under the action of H2. For three A7 = 0.5
steps, we have the following.

X

Evolution of extended data under action of H? (7 = 0.0,0.5,1.0, 1.5).

The shearing of the data is evident. Nonetheless, the phase-space flow is still that of
an incompressible fluid (Liouville’s theorem still obtains).



Phase-space volume is preserved under the action of H?2.
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2  Quantum brackets

We define quantum Nambu brackets (QNBs) as one of the possibilities originally
suggested by Nambu.

[A17A27"' 7Ak] = Z Sgn(0> A01A02"'Aak ’

all k! perms {o1,02,,01}
of the indices {1,2,---,k}

Alternatively, recursively, there are left- and right-sided resolutions.

[Aq, -+ Ag] = A1 [Ag, -+, Ag] + signed permutations

= [A1, -+, Ap-1] Ax + signed permutations

Some of the most interesting features of QNBs center around their not being deriva-
tions, as easily follows from these resolutions. That is

[Ala"' >Ak> BC]_B [A17"' 7Ak70]_[A17"' >Ak>B] C

#0
in general. The left-hand side (up to & ) is the “derivator” Ay, ... 4, (B, C).

The bracket for fixed Ay, -+, Ag is a derivation iff Ay, ... 4, (B,C) =0 for all B,C.

11



Even brackets are even better as they also admit commutator resolutions.

[A, -+, Agn] = [A1, Ag] [As, Ad] -+ [Agnoi, Asn

+ permutations

So, even brackets have direct classical limits as a consequence of the fact that com-
mutators = Poisson brackets. This we like.

: 1\"
i () A ] = (A Ardg La Ay =+ (s Ao

+ permutations

- {Ah A27 e 7A27L}NB .

0Odd quantum brackets, on the other hand, do not become just classical odd brackets
as h — 0, due to a mismatch in the number of derivatives: a 2n+ 1 quantum bracket
will only yield 2n derivatives in the classical limit, not 2n + 1 derivatives.

K Bering points out that the combination of Poisson brackets appearing in the
classical Nambu bracket has another name:

Pfaffian ({Al, Aj}PB) == \/th ({AZ, Aj}PB) .

So the above definition of classical Nambu brackets is actually just

{Ab A2> T 7A2n}NB = Pfaffian ({AU Aj}PB) '

This may be a useful connection to make, say if it can help to establish all those cases
in which the Nambu bracket reduces to a (sum of) single Poisson brackets, as in the
su (2) case mentioned earlier, or to establish other such relationships.

Moreover, in a well-defined sense, the commutator resolution above is a quantum
Pfaffian, i.e. a precise definition when the entries in the matrix do not commute.

12



Brackets from fermionic Gaussians The quantum definition of the Nambu
bracket that we have chosen, and hence the quantum Pfaffian, is naturally expressed
using fermionic integrals for non-commuting Gaussians.

2n
1 1
/exp <_E Z 62 [AZ, AJ] Hj) dgl e d@gn = W [Al, e ,Agn] s

i<j=1

where as usual {6;,0;} = 0 (actually, a Grassmanian J;; does not seem to do any
harm here), [ df; = 0, and the normalization is [ 6;d; = &;;. Alternatively, since
[A(0)do = ZA(6), we may write this as

) ) 1
8_9186_2” ( Z 0; [A;, Aj] ) (Zﬁ) [Ap, -+, Agyl

z<y 1

Either of these fermionic representations have the correct classical limit, rather trans-
parently, in which limit they become well-known fermionic expressions for v/det.

2n
/exp <— Z 91 {Al, Aj}PB 93> d91 cee d@gn = {Al, tee 7A2"}NB

i<j=1

Also, the integral representation is perhaps the easiest way to take the n — oo limit,
such as would be expected to appear in a field theory framework. The sums in the
exponential become integrals, and the 6 integrations meld into a fermionic functional

integral.
teg /exp (‘—/da/dﬁ 0 (a)[A (), (5)]9(6)) Do

Also in this limit, [0 (« = d(a— ). Evaluation and application of this
fermionic functlonal 1ntegral remains to be carried out, however.

13



There is also the red herring known as the “fundamental identity” or FI. By straight-
forward combinatorics, we find that

HA1>“' 7An]7317827"' >Bk] _Z[Ab 7[AjaBl>BQ>"' 7Bk]7"' >An]
j=1
1
= Z sgn (U) (mABl,Bz,m,Bk (A0'17 [A027 e 7A0'n])

n! perms o

1
+ (n _ 2)!A‘71ABLB2,“'7B}€ (Aaza [Aa;),, T 7Agn])
1
+ 2' (n _ 3)| [A0'17 Ao’g] ABl,B2,"~,Bk (A0'37 [AO'47 LR 7A0'n]) + “e
1

+ m [Ama AO‘27 e >Aan_2} ABl,Bg,“- , B (Aan_p Aan) ) ;

where Ay, --- , A, are any n operators, and where By, By, - - - , By, are any k operators.

The RHS vanishes when Ap, g, .. g, =0, i.e. when the (k + 1)-bracket with % fixed
Bs is a derivation. Thus when Ap, g, .. B, = 0 we have the rather obvious subsidiary
identity, the FI.

[[Ala"' 7An]7BlaBQ>“' 7Bk] = Z[Ab 7[Aj>BlaBQ>“' 7Bk]7"' >An] .
j=1
From the point of view of the operator brackets as we have defined them, there does

not seem to be any additional content in this identity beyond the fact that it holds
for derivations.

When the By, - - -, By bracket is not a derivation, the FI is not guaranteed to hold.

For the appropriate identity that stems from the underlying associativity of the op-
erator algebra, and which holds even when the action of a bracket is not a derivation,
see J A de Azcarraga, et al., or P Hanlon and M Wachs, as cited in T Curtright and
C Zachos, PRD68 (2003) 085001.
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Although not always the case, sometimes QNBs are derivations by virtue of algebra
of the As.

For example, consider a free particle on the plane, again.

H = (P?c"‘pgz,)/Qa L = xzpy — yp,

1A, Ly po py] = {[As py] s [ pal} = {[As pa] s [Ls 2y}
= th{[A,py],py} + iR {[A ], po}

= 2ih[A, H]

This particular example is therefore a derivation.

. d
2 (Zh)2 %A (I7px7 yapy) = [A7 L7p327py]

and serves as the simplest example of consistently quantized Nambu mechanics. In
this special case, the quantum brackets have the same algebraic structure as their
classical limits.

15



3 0Odd QNBs are odd
Consider quantum 3-brackets.
[A,B,C]=[A,B|C+[C,A|B+[B,C|A
There is an “identity crisis” for the 3-bracket.
1,B,C]=[B,C]#0 M
Smells like trouble. But things are not so bad for commuting B and C'.

However, even without an identity crisis, odd QNBs can be really odd.  This
stems from the fact that conventional, unconstrained phase-spaces are always even-
dimensional, and not odd.

16



For example, consider once more a free particle on the plane
but now using the 3-bracket [A, p,,p,|.

Does this give something proportional to the time-derivative?
No. Not exactly ...

[I7p327py] = [x7pa:]py - thy

[Y, Dz, Pyl = — [y, Py Pe = —ihp,

SO

. d e d
zh%w =[x, ps,pyl =th p= zha T

This is time evolution accompanied by a /2 rotation in the phase-space, as designated
by the tilde.

ﬁ = (py> _p:c)
So that
z(t)=z(0)+prT

This sort of behavior can occur whenever the number of entries is less than the
dimension of the system phase-space, as always happens for odd brackets when applied
to conventional x, p phase-space.

17



Aside: This is also true classically.

For a system with N degrees of freedom, hence 2/N-dimensional phase-space,
VO(dIl/\"'/\dIn_l

is guaranteed only when
n=2N .

18



As further, very general illustration of quantum 3-brackets without an identity
crisis, consider the quantum mechanics of any axially symmetric system, [H, L] = 0
with Hamiltonian H, and with L generating rotations about the axis of symmetry,
for example L = L.

For such H, L, and any other operator A, the quantum 3-bracket simplifies to

[A,H,L] = LAH — HAL .
Another way to write this is as the sum of two commutators.
[A,H, Ll =[{A, L} ,H|+ [HL, A] .
Nevertheless, this 3-bracket is still not a derivation. For general A and B,

AH,L (A>B) = [ABaHaL] _A[B>H7L] - [A>H7L]B

The second line is valid only because [H, L] = 0.

Note that derivators are neither symmetric nor antisymmetric under A «<» B. For
example, if A = B, then Ay (A, A) =[[A4, H|,[A, L]] # 0 for generic A.

19



The structure and effects of this quantum 3-bracket can be understood using
projections. Since the operators L and H commute, we may resolve the identity in

terms of projection operators which are simultaneous eigenoperators of both L and
H.

1= ZP/\w » PawOanOuw = PauPrr
Aw

LPy, =h\ Py, =Py\,L, HP), =hw Py, =P\,H .

The last line implies [L,P,,] = 0 = [H,P),], of course.
Therefore, any operator A may be written as a sum of simultaneous left- and
right-eigenoperators of L and H.

A= Z ]P)\lwl AIP))\TUJT = Z A)\l,wl,)\r,wr )

ALWE A rwre ALW s Arwr

A)\hwh)\mwr = P)\lwl APy w,
LA)\hwl:)\T:wT - h)\l A)\hwh)\T:wT Y A)\hwh)\T:wTL - hAT A)\lzwl7)\7“7w7“ Y

HA/\hwl,)\ = hw A)‘lvwly)\rywr ) A)\hwl,)\r,er = Ty, A)\l,ww\r,wr .

r,Wr

On such individual eigenoperators, the action of the 3-bracket [A, H, L] = LAH —
H AL reduces to an interesting eigenvalue equation, where the eigenvalue is an element
of “area” on the quantum LH-plane.

[A/\l,wl,/\r,wr> Ha L] = h2 ()\lwr - Wl)\r) A)\l,wl,)\r,wr .

This (signed) area is given by the planar cross-product of the pairs of left- and right-
L and H eigenvalues.

()\lwr - wl)\r) = ()\l,wl) VAN ()\r,wr) .

But obviously this is not conventional time evolution. Once again, the bracket
combines time evolution with some rotation effects.

In particular, when exponentiated, this bracket does not yield the usual time-
dependent phase. In fact, finite evolution generated by the 3-bracket [A, H, L] will
not be a unitary nor even a similarity transformation. More on this later.

20



4 Bracket reduction - classical versus quantum

Perhaps an alternate way of obtaining odd brackets would be through reduction from
higher even brackets. That is a logical possibility, but there are some subtleties in
the quantum case.

Classically, on the z, p,, y, p, phase-space,

9 (A, B,C)

A? B7 C? =

is a bona fide classical 3-bracket. The RHS involves partial derivatives only with
respect to the three variables z,p,,y. Any p, dependence in A, B, C goes along for
the ride.

But QMly things are not so simple. From the commutator resolution, in general,

[A,B,C,p,] =ik {[A,B],8,C} + ik {[C,A],d,B} +ih {[B,C],8,A}

# constant X [A, B, C]|

(Incidentally, the first line of this equation fully exhibits the relevant structure in the
case that the underlying phase-space is higher than 4-dimensional.)

Now, the first line in this last equation could be used to just define a new quantum
three-bracket which in general will differ from the previous operator definition of
[A, B,C]. And, indeed, the RHS of the first line does have the correct classical limit.
However, if the classical limit is not taken, then there are vestigial quantum effects
of p, that may be understood as resulting from higher p, derivatives implicit in the
quantum commutators and anticommutators. We next look at these vestigial effects
in more detail.

21



Since any reasonable distribution on the phase-space can be obtained from linear
exponentials,
exp (tax + tbp, + icy + idp,)

either through partial derivatives with respect to the parameters, a,b,c, and d, or
else through Fourier/Laplace transforms, it suffices to replace one of A, B, or C, with
such an exponential, say A. Then compute

lexp (iax + ibp, + icy +idpy) , B, C, p,]
= ih {[exp (tax + ibp, + icy + idp,) , B],0,C'}
— he{[B, C], exp (iax + ibp, + icy + idp,)}

+ i {[C, exp (iazx + ibp, + icy + idp,)|,0,B} .

22



Let’s take an explicit example so that things don’t get out of hand. Let

H:%(pi—irﬁ)%—py.

This sets up y to act merely as a linear measure of time, since [y, H] = ih gives
just y (t) = y(0) +t. Another Hamiltonian invariant is then easy to find from the
oscillator behavior of the remaining variables. Take

I = (p, +ix)exp (—iy) .

Then we have
[H,I] =0 = [H,py] , [I,py] =thd,l =hlI

and

[A,H,I,py] =h {[AvH]vj}:ﬁ [{A7]}7H]

# constant x [A, H, I]

This quantum 4-bracket is not proportional to the originally defined quantum 3-
bracket, in general.

23



The classical phase-space picture for this example is given by

S
}é é
X /

A right circular cylinder of constant H intersects a helical inclined plane of constant
Re I to define a trajectory.

24



Operator products are equivalent to star products of appropriate classical func-
tions on the phase-space, through use of the Weyl correspondence. (See our forth-
coming book. Or better yet, read our papers on hep-th.)

These star products allow immediate comparison to classical expressions, since they
can be easily reduced to ordinary products, for the case at hand.

Expressing things in terms of ordinary products, the calculation of interest then
ultimately reduces to

lexp (iax + ibp, + icy + idpy,) , H, I, p,],

= (271] cos <%) +ih?* (a — ib) e sin (%)) X

X h(—apy + bx — ¢) exp (iax + ibp, + icy + idp,)

A hd
+ih® (a — ib) e~ sin <7) exp (tax + ibp, + icy + idp,)

where H = 1 (p? + 2?) + p, = py + 3 (po + iz) * (p, — iz) + 3h and
lexp (iax + ibp, + icy + idpy) , H|, = h(—ap, + bx — ¢) exp (iax + ibp, + icy + idp,)

The previously mentioned vestigial p, effects are clearly evident in the above.

25



It actually suffices to illustrate the point just to consider exp (icy + idp,), i.e. to
set a = 0 = b in the previous exponential. Then we have

hd

1
5 lexp (icy + idpy) , H,I,p,], =c I cos <?) exp (icy + idpy)

2 (ih)

to be compared with the classical result

0 (exp (icy + idp,) , H,I)
a (y7 a:?px)

{exp (icy +idp,) , H, I, py}yp =

=c [ exp (icy + idp,) .
That is to say,

1 . . hd . )
) lexp (icy + idpy) , H, I, p,], = cos (7) {exp (icy + idpy) , H,I,py}\p -

The prefactor on the RHS exhibits the result of higher order p, partials, with a
manifest classical limit.

On the other hand, we also have

hd
lexp (icy + idpy,) , H, 1| = —hcos (?) {exp (icy +idpy), H, I, py}xp

hd
+ 2isin (7) H I exp (icy +idp,)

Were there only the first line on the RHS of this last result, we would conclude that

lexp (icy + idpy) , H, I, p,|, o [exp (icy + idp,), H, I],. But, alas, there is also the sec-

ond line and therefore [exp (icy + idp,) , H, I, p,], is not proportional to [exp (icy + idp,) , H, 1],
except when d = 0 mod (27 /h).
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5 Bracket equivalence classes
Even though

[A, B,C, p,| # constant x [A, B,C]
as an operator statement, nevertheless the effects of the left- and right-hand sides can
be equivalent.
Lemma (“4=3+42") If

H,J|=0=[H,K], [JJK|]=L
then for any A
(A H, J K] ket = A H, Ll pracier + 1A HL] e

and therefore

Aggrx =Anr

We shall say that these two QNBs are in the same equivalence class since they dif-
fer only by a derivation, with the latter expressed as a commutator. As we shall
see later, this equivalence can be expressed precisely through a (unitary) similarity
transformation.

More generally, QNBs can be equivalent in their effects to linear combinations of
lower-order QNBs. This can lead to quite elaborate structure for partitioning into
equivalence classes.

Applying this Lemma to the previous explicit example leads to the following.

[A7 H7 I? py] h [A7 H7 I]3—brackct + h [A7 HI]2—brackct

4-bracket

So to compare to the result for classical brackets, the quantum 3-bracket here is not
equal to the quantum 4-bracket. Nevertheless, the 3- and 4-brackets in question are
in the same equivalence class.

Models possessing su (2) invariance provide another simple illustration of bracket
equivalence (see the Appendix). The concept is actually quite generally applicable.
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6 Quantum Solenoidal Flow

Quantum symplectic traces Classical symplectic traces have quantum correc-
tions, in general. Recall in particular (sum repeated i = 1,--- | N is understood)

{Av B?*rivpi}NB - (N - 1) {Av B}PB

Corrections to the corresponding quantum 4-bracket follow from the commutator
resolution.

[A,B,xi,pi] = {[xhpi] ) [AuB]} + {[piuA] ) [th]} - {[wa] ) [pi>B]}

o 2 _ 312 7

where the RHS terms include anticommutators of partial derivatives of the operators,
as well as the sought for [A, B]. In the classical limit, this gives

x [A,B,x;,pi) = (N —1){A, B}pp

lim
h—0

2 (ih)®

To make explicit the corrections, while retaining generality, take exponentials of ar-
bitrary linear combinations of xs and ps.

A= eaz-:c+ap~p B = eﬁm'$+ﬁp‘p
5

The as and (s are parameters. We find the

28



Quantum Trace Lemma:
O T+ 2T+ Pp-
[6 pp’€5 Bppaxiapi]*

h

— 2'Zﬁ (N _ 5 (ax . ﬁp - Oép . ﬁ.’lﬁ) ) [eaz‘x'i'ap‘p’ 651'x+ﬁp‘p]

tan% (v - Bp — vy - Ba)

*

The prefactor on the RHS involves (sums of) areas on the parameter phase-space
planes.

g - Pp —ap -z = Z (@w)i (517)@' - Z (O‘p)i (650)1

In the classical limit, obviously limj_ % (ay - By — - By) COt % (0 Bp—ay-fr) =1
gives

) } = lim ——— [ Qg T+opp BeTHBpp .. ]
»Liy Pi fNp ﬁ{% 5 (7,]‘“2)2 € , € y Liy Pi|

= (v e, o)

as expected. Proof of Lemma: Just reduce the star products to ordinary products.
az-atopp SPartbpP] — 944 h ag - T+ap-p+Be-x+Bpp
[e ,e L— Zsmg(aw-ﬁp—ap-ﬁx)xe
h
{ea x app7e :BBpp}*—2COS§(ax'ﬁp_ap'ﬁgj)Xea x CYppB«'E p P

Now a couple more derivatives, as required in (1), and QED.
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Examples of quantum solenoidal flow Define the quantum phase-space diver-
gence as

0 0 0
(e Ly, === [pi, Ly, |+ =— [z, Iy, - -
(923 [Zj7 1, ] apz [p 1 ] + al‘z [.T 1 ]
(sum ¢ =1,---, N is understood on RHS). That is
0
Zﬁa_ [Zjajla' ' ] = [xi7 [piyjh” ]] - [pza [*ria-[h' ]]
Zj

For definiteness, consider a 3-bracket. That is nicely behaved when the two generating
entries in the bracket commute. This leads to a quick
Lemma: If [H, L] =0 then

(3, [ps, H, L]] — [ps, (w5, H, L]] = [H, L, z;, p;)

The quantum divergence of this 3-bracket is a symplectic trace of a quantum 4-
bracket.

As discussed above, this trace is not necessarily proportional to the commutator
[H, L] as might be expected based on the classical limit. However, there are situations
where this does hold.

For example, suppose L generates rotations in a fixed plane, say the m,n plane:
L = 2,pn — xupm. Then with no assumptions about H we have another
Lemma: If L is a rotation in any fixed plane, then

[H, L, xi,pi] =2 (N —1)ih[H, L]

for any H. Putting these two lemmata together gives a little
Proposition: If L is a Hamiltonian-preserving rotation in any plane, i.e. [H, L] =0,
then H, L generated 3-bracket quantum flow is solenoidal.

0

m@zj [z;,H, L] =0 .
The same conclusion holds for 4-bracket flows that are equivalent to such 3-bracket
flows.

Finally, we note that the peculiar anisotropic oscillator, used previously to illus-
trate the intricacies of quantum bracket reduction, is another particular example of
quantum solenoidal flow. In that case, both [H,I] = 0 and [H, I, z;, p;] = 0 by direct
calculation. Thus from the first Lemma above, a%j z;, H, 1] =0 .
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7 Parameterization and interpretation

The previous 3- and 4-bracket equivalence can be explicitly parameterized by “ex-
ponentiating” the effects of the bracket. For example, consider the 3-bracket in the

Lemma, and define parameter-dependent operators A (7) by

ih2diTA (1) =[A(r) . H, L]

=LA(r)H—-HA(T)L

where [H, L] = 0 was used in the last step. The formal solution, with A (7 = 0) = A,
is given by iteration. The result for the 3-bracket flow is

A(T):i—(_—”>n[...[[A,H,L],H,L],--- H I

> 1 Z'Tm—z'Tnmn T m
:Z—m!n!(ﬁ> (7) HMLPAHMLT,

where the nth term on the first RHS line involves n nested 3-brackets, and where the
second RHS line obtains when [H, L] = 0.
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In terms of the previously discussed eigenoperators, this is

A(T):Zi <_h—’27) > Pau [-[[AHLLHL,--  H L Py,

)\l Wi 7)‘7”7‘*)7”

(Wi A —A\jwi )T o (Wi A —Njwi )T
— E el 1wr) Akz,wz,/\r,wr — E Py, elwi 1wr) AP, o

AL WA, wre AW A, wre

Each eigenoperator has its particular areal phase develop linearly in 7 over the course
of the flow.

The variable 7 has dimensions of time, but obviously it is not the conventional
time parameter t. The relation between 7 and ¢ is angular momentum dependent.

When [H,L] = 0, the result can be written in deceptively simple short-hand
through the use of an operator ordering prescription.

A (7_) _ ewg £/52A e—irg H/n?

The underlining arrows, not the left-right order on the page, indicate from which
side the generators are to act upon the A: HAL=H L A=A H L . (When

[H, L] # 0 this notation is not the best! Nevertheless, the formal solution for A (1)
can always be written in terms of exponentials with a suitable ordering prescription,
even when [H, L] # 0.)

Caveat emptor! This is not a unitary transformation.

A(r) B (1) # (AB) (7)
The ordering is important.

—1
: 2 ; 2 ; 2
(ez—rH L/h) o~iTH L/W 4 ~irL H/h
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Any QNB can be similarly “exponentiated” to obtain 7 dependent A (7).

For example, consider the 4-bracket of the Lemma. Then

z’ﬁQdiTA () =[A(7),H, J, K]

A(7) :Z% (_—”) --[[A,H,J K| ,HJK], - HJ K|

and the previous “4=342" relation between brackets becomes a unitary equivalence

between the 3- and 4-bracket flows
Aw gk (7_) _ e—iTHL/h,2AHL (7_) 6iTHL/)‘z,2

To distinguish the flows generated by 3- and 4-brackets, we have used subscripts on

the evolved operators. The ordering of the additional phase on the RHS is traditional,
as written on the page.

Applied to the explicit example above, this becomes
AH,I,py (7_) — e—iTHI/hAHﬁI (7_) ei'rHI/h
But once again, no matter which way you look at it, (AB) (1) # A (1) B (7).

When the flow of expectation values is considered, it becomes clear that this
strange product behavior is not a problem. For consistency, all operator products are
to flow in unison, and not individually. That is, the correct procedure is to compute
(AB---) (1), and then compute the expectation value. With this procedure, the flow
can always be swept into the density operator, flowing backward in 7, and thence
described by a 7 propagator and/or Green’s function.
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8 Propagators and Green functions

When operator products are 7 evolved in unison, AB---C — (AB---C) (1), their
expectation values may be computed at later 7 values by shifting the evolution over
to the density operator.

(AB---C) (7)) = Tr(px (AB---C) (7)) = Tr (p(r) x AB---C) ,

where in the last step, the density operator flows backwards in 7.
For example, consider flow generated by the H, L. 3-bracket.

(AB---C) (1) = ™8 LM (AB...C) ik 2P

Then, with standard hermiticity of H and L combined with the cyclic properties of
the trace, and with due care to the ordering, we have

Tr(px (AB-+-C) (1) = Tr (px (¢ L7 (B C) 775 217)

=Tr ((6_”<£ B/, gt £>/EQ) x (AB--- C’)) .

where [H, L] = 0. Thus the trace relation holds with

P (7_) _ e—irg <5/712;) eirg H/h?
The flow of the density operator is therefore backward in 7 compared to that of the
operators whose expectation values are of interest. Infinitesimally

W p(r) = H L p(r)—p(r) L H="Hp(r)L—Lp(r)H

as opposed to the operator evolution given above. This feature of backwards evolution
is well-known to be true in standard Hamiltonian dynamics.

Also note that the flow of the operators must be in unison, as above, for this
procedure to carry through. It would not be true that all the 7 evolution of the
expectation value could be swept into the density operator alone if we were to evolve
the operators separately, since (AB---C) (1) # A(1)B(7)---C (7) and therefore
(A(T)B(r)---C(r)) =Tr(px A(r) B(r)---C (1)) # Tr(p(r) x (AB---C)).
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Evolution of the density operator can be realized in the phase-space formulation
of quantum mechanics. In that formalism, the density operator is represented by
the Wigner function, f (z,p). General Wigner functions (WFs), including the non-
diagonal cases, are defined for pure state systems described by wave functions 1, (z)
like so:

far (z,p) = ﬁ /dy o (z— Ly) €PNy (24 Ly) = o () %6 (p) x5 (2) -

Here we have ordered the indices to correspond with the bra-ket notation for the
underlying operator, |a) (b, and in the last step we have obtained the compact ex-
pression of Braunss through the use of Groenewold’s non-commutative but associative
(NBA) “star” product operation.

Such pure state Wigner functions obey the orthonormality conditions

+o0
// dl’dpfab(l',p): ab 5 (Qﬂh) fab*fcd:fad 6bc>

—00

when the underlying wave functions are orthonormal.
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Propagation of WFs is effected through the use of a phase-space propagator in
the usual sort of integral relation.

f(x,p;7) :/dXdPG(a:,p;X,P;T)f(X,P) .

For conventional time evolution generated by the Hamiltonian, H,

Gr(z,p; X, Pst) =270 Y Y faplw,p) e =B £ (X, P)
a b

while for 7 evolution, the phase is modified appropriately. For example, again con-
sidering the H, L generated 3-bracket evolution, we have

Grr(w,p X, P;7) =27h Y Y fap(w,p) e B bE)T/M f (X P).
a b

We have assumed the labels on the Wigner functions designate particular energy and
angular momentum left- and right-eigenvalues, as indicated. The propagator obeys
the same infinitesimal 7 evolution as the density operator, but with operator products
supplanted by * products.

d

iﬁQd—GHL(a:,p; X,P;7)=HxGur(x,p; X, P;7)* L — LxGur(x,p; X,P;7)x H .
T

The corresponding Green function is given by

o0
gu,r (z,p; X, Piw) = / dr e "= Gy (2, p; X, P;7)
0
0

= 2mh 33 fuafap) [ dr et ne B LB (X, )
a b

l
= 27h ;; fab(l‘,p) W — e _ (lea — laEb) /h2 fba(X, P)

The poles of this Green’s function have residues consisting of the factorized Wigner
function bilinears. Thus the Wigner functions can be recovered, in principle, from
these residues. There is a “degeneracy” issue, however, since it is possible for different
L and H eigenvalues to give the same value for [,F, — [,F}, hence the same pole
location, and thus a residue which is a sum of the corresponding Wigner function
bilinears. But this degeneracy issue is no more problematic than the usual situation
corresponding to degenerate energies.
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As a simple example that can be explicitly worked out, reconsider the free particle
on the plane with generators p, and p, in a 3-bracket. Then

Gpmpy(x?pmyapy;Xa PX7Y> PY;T)
=0(x—X+p,7) d(y—Y —p,7) X

X(;(pa:_PX) 5(py_PY)
which is different than the usual free Hamiltonian H = % (pi + pf/) generated flow

GH(zapx>yapy;X>PX7KPY;t)
=0(x—X+pit) 6(y—Y +pyt) X

X0 (ps — Px) 0 (py — Py)

but obviously mathematically equivalent to it.

Thanks for your attention, and thanks to ANL for enthusiastically hosting this
conference.

37



Appendix: Particle on a 2-sphere and bracket equivalence The commutator
algebra of the charges (Lo =L, , Ly = L, +iL,) is

[L.,L_]|=2hLy, [Lo,L_]=—hL_, [Lo,Ly]=hL,,

giving rise to [L_, L3] = {[L_, Lo], Lo} = A{L_, Ly}, etc. The invariant quadratic
Casimir is
H=L,L_ +Ly(Lo—h)=L_L,+ (Lo+h)Lg.
This is also the Hamiltonian for the free particle on the sphere.
We use the algebra and the commutator resolution of the 4-bracket

[Av B,C, D] = {[Av B] ) [C7D]} - {[A7C] ) [B7 D]} - {[A7 D] ) [C7B]} )

to obtain
[A, Lo, L., L_]|=2h[A H] ,

as well as the more elaborate
[A7 Hu L+7 L—] = 2h{["47 H] ) LO} = 2h [{A, LO} ) H] .

In the latter case, the time derivation is entwined with the effects of a rotation.
So for SU (2) invariant systems with H = /2, we obtain the complete analog of
classical time development as a derivation, namely

1
Zﬁ2% = h[Au H] = Z [Av L07L+7L—] ’

where the QNB in question happens to be a derivation too. By contrast, the entwined
form gives rise to

ih? {%,Lo} =h{[A H], Ly} = E [AH, L, L_] .
dt 4

Since the latter of these is manifestly not a derivation, one should not expect Leibniz

rule and classical-like fundamental identities to hold. Of course, since a derivation is

entwined in the structure, substitution A — AA and application of Leibniz’s rule to

just the time derivation alone will necessarily yield correct but complicated expres-

sions.
The “4=342" Lemma applies to the present situation to yield.

[A7 H7L0] = [{A>L0}>H] + [HLoaA] )
[A,H, L., L] =4h[A H, Lo + 4h[A, HL,) .

The first line here is a special case, valid for HLy = LogH, of one of several general
non-manifestly-antisymmetric ways of writing 3-brackets.
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