

Tomasz Skwarnicki

On behalf of the LHCb collaboration, including results from CMS experiment

Standard and Exotic Hadrons

- Longstanding dispute in light meson spectroscopy if exotic states exist (too many scalar states?)
- No convincing experimental proofs for existence of elusive pentaquarks
- Recent discoveries in heavy quark states have revived hopes for conclusive proofs for existence of exotic mesons

- Discovered by Belle in 2003 at e^+e^- B-factory in B^+ \rightarrow X(3872)K⁺, X(3872) \rightarrow J/ $\psi \pi^+\pi^-$
- Confirmed by CDF and D0 in 2004 at Tevatron, mostly prompt (~84%) production $pp \rightarrow X(3872)$ +anything
- Also observed by BaBar in 2005. Later at LHC by LHCb and CMS.
- Its width, mass and decay modes disfavor a standard cc state.
- DD* molecule, tetraquark, hybrid...?
- Even 10 years after the discovery some basic experimental questions are not answered:
 - Is its J^{PC}=1⁺⁺ or 2⁻⁺ ?
 - Is its mass below the $D\overline{D}^*$ threshold?
 - Prompt production mechanism ?

3

- Advantages of LHC vs e⁺e⁻:
 - Prompt production and orders of magnitude larger B-meson production rates
- Advantages of LHC vs Tevatron:
 - Higher cross-section thanks to higher energy
- Advantages of LHCb vs central detectors:
 - Large trigger bandwidth totally devoted to heavy flavor physics; higher trigger efficiencies
 - Can identify and trigger on lower p_T (di)muons
 - K/π separation (RICH detectors)
- Advantage of CMS vs LHCb:
 - Higher luminosity

X(3872) quantum numbers

6

X(3872) interpretations

 J^{PC} of X(3872) has been determined to be $1^{\scriptscriptstyle ++}$

$\eta_{c2}(1^1D_{2-+})$ is now ruled out!

$\chi_{c1}(2^3P_{1+\text{+}})~~\text{possible but}$ disfavored by mass

1⁺⁺ was expected in both tetra-quark and molecular models

The four-quark models also favored by the coincidence of X(3872) mass with the D^{*0}D⁰ threshold

Tetra-quark

Nearly degenerate charged partners expected but not observed.

D*0 D0 molecule

7

Binding energy requires mass to be below $M(D^0)+M(D^{*0})$. Satisfied? (see next)

The statistical error on the mass measurement from 2010 data not competitive yet, but the systematic error is small.

Already have 3 fb⁻¹ collected in 2011-12. Expected statistical error ~0.05 MeV. Good determination of $M(D^0)+M(D^{0*}) = 2M(D^0) + \Delta M(D^{0*}-D^0)$ also needed.

X(3872) production

- Prompt X(3872) production cross-section measured at Tevatron:
 - Bignamini et al PRL103, 162001 (2009); PLB 684, 228 (2010)
 - orders of magnitude too large to be a DD^{*} molecule
 - Artoisenet, Braaten PRD81, 114018 (2010); PRD83, 014019 (2011):
 - can be reconciled with the molecular model when $D\overline{D^*}$ rescattering is considered
 - they also predicted X(3872) pp $\sigma \times BR(X(3872) \rightarrow J/\psi \pi^+\pi^-)$ at LHC scaling from the measurement at Tevatron using NRQCD approach
 - Esposito, Piccinini, Pilloni, Polosa arXiv:1305.0527:
 - Propose elastic scattering of D-meson pairs with co-moving pions as alternative mechanism for enhancement of molecular X(3872) in prompt production (no predictions yet)

- The cross-section measured by the LHCb in the 2010 data (E_{CM}=7 TeV) a factor of 2.4 smaller than predicted:
 - $5.4 \pm 1.3 \pm 0.4 \text{ nb} \text{ in } 2.5 < y < 4.5 \text{ and } 5 < p_T < 20 \text{ GeV vs. } 13.0 \pm 2.7 \text{ nb} \text{ (Artoisenet, Braaten error from the normalization to CDF)}$
 - This was based on very little data in the forward region.
- Need more measurements including differential cross-sections, separating prompt and B productions. Also in the central region.

X(3872) production at the central region at LHC

- Total cross-section $\sigma(pp \rightarrow X(3872)$ +anything) x BR(X(3872) $\rightarrow J/\psi\pi^{+}\pi^{-})$ factor of 3.8 smaller than predicted:
 - 1.06±0.11±0.15 nb in |y|<1.2 and 10< p_T<30 GeV vs. 4.0±0.9 nb (Artoisenet, Braaten error from the normalization to CDF)

Looking for new decay mode of X(3872)

Search for $X(3872) \rightarrow p\bar{p}$

arXiv:1303.7133

- Snew S
- Search for $B^+ o X(3872)K^+$ In the $B^+ o p\bar{p}K^+$ decay channel with 1 fb⁻¹
- $B^+ \rightarrow p\bar{p}K^+$ signal yield: 6951 ± 176
- $X(3872) \rightarrow p\bar{p}$ signal yield: -9 ± 8

• No signal, but upper limit on the ratios:

$$rac{BR(B^+ o X(3872)K^+, X(3872) o par{p})}{BR(B^+ o par{p}K^+)} < 0.017$$

$$\frac{BR(X(3872) \to p\bar{p})}{BR(X(3872) \to J/\psi\pi^+\pi^-)} < 2.0 \times 10^{-3}$$

Lнср

Summary

- LHC is having impact on X(3872):
 - LHCb has settled its quantum numbers to be $J^{PC}=1^{++}$
 - This favors exotic explanations of X(3872)
 - The cross-section measured by LHCb and CMS lower than predicted for LHC by Artoisenet-Braaten from the Tevatron data.
 - Prompt production mechanism for molecular X(3872) subject of theoretical controversy
 - Potential for the most precise determination of X(3872) mass
- $M(J/\psi\phi)$ structures in $B \rightarrow J/\psi\phi K$ decays:
 - Mild inconsistency (2.4 σ) about existence of the narrow X(4140) peak in M(J/ $\psi\phi$) between CDF and LHCb
 - CMS is reporting a significant but wider peak at 4148±2±5 MeV (and a wide peak at 4317±3±7 MeV)
 - Nature of these structures needs to be studied. Both CMS and LHCb have much larger data samples than analyzed so far.
- LHC should impact studies of other exotic states in B-decays:
 - − E.g. Z(4430)⁺ → ψ (2S) π ⁺ state claimed by Belle, but not confirmed by BaBar in B⁰→ ψ (2S) π ⁺K⁻

