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Various methods for simulating microstructure fibers have incorporated symmetry for improved efficiency and
discrimination of nearly degenerate modes. A revision of the previously used symmetry-class implementa-
tions is proposed, with a more efficient partition of the degenerate classes. Advantages demonstrated using a
multipole calculation should apply to finite-element and other simulation methods. © 2004 Optical Society of
America
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1. INTRODUCTION
Microstructure fibers, initially discussed some time
ago,1,2 have recently captured the interest and imagina-
tion of the community and have made rapid strides
forward.3–5 Many interesting microstructure optical fi-
ber (MOF) results have so far involved fibers with only
one or a few guided modes. Supercontinuum generation
effects6 and endlessly single-mode operation,3 for ex-
ample, can be understood by modeling only the funda-
mental mode of fibers with a small number of cladding
holes. Scalar numerical results have proven useful in
some cases.7

While simple single-mode models have often been suf-
ficient in understanding MOF propagation, interest is
now turning to structures where multiple modes and
more detailed fiber geometries are essential. Low-loss
guidance in air-core fibers,4 for example, requires many
cladding holes and precise core shape. Air-core propaga-
tion can be deteriorated by multiple unwanted surface
modes localized in glass webs near the core.8 Other ap-
plications, such as sensor fibers and multicore couplers,
similarly involve multiple, nearly degenerate modes.

For these reasons, the cleanest possible separation of
mode classes using symmetry is desirable. It not only
improves efficiency by reducing the size of matrix calcu-
lations, but can avoid qualitative inaccuracies.9,10 For
this reason, most theory and modeling efforts include
symmetry analysis in some form. However, in most mi-
crostructure fiber simulations described so far, symmetry
classes have not been interpreted in the most efficient
way.

In this paper, a revised implementation of symmetry
classes is proposed for the most common waveguides,
with C6v (sixfold rotational and reflection) symmetry.
The partitioning of degenerate modes into classes can be
done in different ways; as we will see, the most efficient
partitioning starts with a simple separation into rota-
tional symmetry classes. This is easily implemented and
cleanly separates the degenerate symmetry classes.
Nondegenerate mode classes, which have both rotational
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and reflection symmetry, are not redefined since previous
implementations are already quite efficient.

The suggested symmetry analysis has already been
used in some previous simulations, where its application
was fairly straightforward.2,10 The present results show
that they can be applied more broadly to other methods,
where the implementation is less obvious. The multipole
method is implemented in the following simulations, but
comments are provided that should be useful for other
methods as well.

The last section presents a simulation of a fiber with ro-
tational symmetry only, which fundamentally cannot use
the C6v symmetry classes. These are efficiently handled
by the revised multipole method with no additional
changes. This demonstrates that some additional design
flexibility is opened up by the revised method at a mini-
mal cost of efficiency.

2. GUIDED MODES AND SYMMETRY
Microstructure fibers have complex geometry with fea-
tures of the order of the wavelength of light, and so mod-
eling of light propagation in these fibers is nontrivial.
Several methods have been developed, with various as-
sumptions and trade-offs. While beam-propagation and
finite-difference time-domain calculations have their
place, most methods aim to find the guided eigenmodes of
the waveguide: fields with characteristic wavelength l
and longitudinal wave number kz ,

E~r! 5 E~x, y !exp~ikzz !, (1)

H~r! 5 H~x, y !exp~ikzz !. (2)

Since modes are often leaky, kz may have a small imagi-
nary part and still describe a mostly confined mode with
finite loss. For each numerical method, the field vectors
are represented by a vector of coefficients b, and Max-
well’s equations reduce to a mode equation linear in b.

For example, according to the finite-element method,11

the vector b contains values of the magnetic field vector
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sampled at many judiciously chosen grid points. The
mode equation takes the form of an eigenvalue equation,

~A 2 neff
2 B!b 5 0. (3)

Similarly, eigenvalue-type mode equations can be ob-
tained assuming b is a vector of coefficients for some set
of basis functions. Depending on the basis, one can get
the plane-wave expansion method12 or the efficient modal
method.7

Along slightly different lines, the multipole and
boundary-element methods take advantage of the specific
structure common to most MOFs. Assuming that the
complex geometry is composed of homogeneous, constant-
dielectric regions, these methods represent the mode field
using a much smaller number of coefficients than the
more general, ‘‘brute-force’’ approaches. The mode condi-
tion now takes a null-matrix form,

M~l, neff!b 5 0. (4)

For the multipole method, b includes the coefficients of a
circular-function expansion of the fields locally around
each hole.13 For the boundary-element method, like the
finite-element method, b includes samples of the mag-
netic field, but here only samples on the boundaries of the
constant-dielectric regions are needed.14

In all cases, symmetry allows dramatic simplification of
the calculation. If the mode field has a symmetry, the
full vector of coefficients b can be obtained from a much
smaller set of coefficients bs using the appropriate sym-
metry relations. This can be expressed generally using a
sparse decoding matrix Z that is tall and thin:

b 5 Zbs . (5)

Table 1 sketches the symmetry relations that could be
used for the various methods, assuming, for example, a
mode with sixfold rotational symmetry number p,

E~Rp/3r! 5 exp~ipp/3!Rp/3E~r!. (6)

Here Rp/3 rotates vectors by p/3 about the z axis. We
note that for each simulation method, only some of the
field components are explicitly represented (the remain-
ing components can be derived using Maxwell’s equa-
tions). For example, Ez and Hz might be explicitly rep-
resented in one implementation of the multipole method,
but Hx and Hy might be represented for the boundary-
element method. Table 1 is meant to give the general
idea, but details of the symmetry relations depend on
whether longitudinal or transverse fields are used. From
these relations, one can obtain (roughly) six elements of b
for each element of the reduced representation bs . Each
element of the matrix Z is obtained in a straightforward
way from the symmetry relations. The matrix typically
has dimensions roughly N 3 (N/6) with only 1 or 2 non-
zero elements per row. It is thus very easy to precom-
pute, store, and multiply.

The modal conditions can be converted into a matrix
equation of much smaller dimension once a reduced rep-
resentation is defined. Specifically, the eigenvalue equa-
tion (3) becomes

Z* ~A 2 neff
2 B!Zbs 5 ~As 2 neff

2 Bs!bs 5 0, (7)

and the null-matrix equation (4) becomes

Z* MZbs 5 Msbs 5 0. (8)

Here, the matrix Z* can be chosen in a number of ways
but generally projects a reduced vector of size ; N/6
from a full vector b of size N. Typically one can choose an
obvious, sparse inverting matrix, so that Z* Z 5 1 is the
identity matrix with the dimension of bs .

3. REVISING C6v SYMMETRY CLASSES
Previous discussions of symmetry in multipole MOF
modeling9,13 borrow from the general theory presented by
McIsaac for electromagnetic waveguides.15 Of course,
the symmetry classes presented for C6v waveguides are
correct, but they do not take full advantage of the freedom
we have in partitioning degenerate mode classes. This
previous method13 defines (arbitrarily) each degenerate
mode class to have a definite reflection symmetry, but to
have rotation symmetry only in superpositions. This re-
sults in making the quadrant a minimum computational
sector: field values in one quadrant are represented ex-
plicitly, and the other sectors are inferred using even or
odd symmetry of the mode upon reflection across the x
and y axis.

It is possible instead to partition classes with definite
rotational symmetry (but with reflection symmetry only
in superpositions). In this case, the computational sector
can be reduced to one sixth of the plane (or smaller) for
both degenerate and nondegenerate modes, with corre-
sponding reduction of the dimension of the modal equa-
tion (8). These advantages may seem natural in light of
methods for modeling Bragg fibers2 and other waveguide
structures.16 In fact, rotational symmetry has been ap-
plied to microstructure fibers using at least one method,10

where the basis makes this a particularly natural choice.
However, broader application to multipole and other mod-
eling methods has not yet been reported.
Table 1. Symmetry Relations Used to Obtain Compact Field Representations
for Various Methods Outlineda

Method Coefficient Definition Symmetry Relation

FE or BE H @x/y#(rj) 5 bj
@x/y# Sbj8

x

bj8
y D 5 exp~ipp/3!Rp/3S bj

x

bj
yD

Multipole Hz(r) 5 ( j,mbm
H, jfm(r 2 rj) bm

H, j8 5 exp@i( p 2 m)p#/3bm
H, j

Plane Wave Hz(rj) 5 ( jbj
H exp(ikj • r) bj

H 5 exp(ipp)/3bj
H

a In the expressions, we assume rj8 5 Rp/3rj and kj8 5 Rp/3kj .
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A. Simple Symmetry Arguments
McIsaac presents the symmetry classes in the difficult
language of irreducible representations of the symmetry
group. This is appropriate for a rigorous discussion but
obscures some intuitive and easily derived properties of
the modes. Consider a waveguide with N-fold rotational
symmetry (made of isotropic dielectric). If fields E and H
satisfy Maxwell’s equations with a fixed wavelength l and
waveguide propagation constant kz , then a rotation of
these fields by 2p/N is also a valid solution with the same
l and kz . We can define projection operators that parti-
tion the space into sectors according to rotation number l:

Pl$E~r!% 5
1

N (
n51

N21

exp~2i2pnl/N !R2p/N
2n E~R2p/N

n r!,

(9)

where R2p/N is the operator that applies the rotation to
the fields. Since rotation preserves l and kz , the projec-
tion of any guided mode on sector l gives either zero or a
valid confined inode with the same l, kz , and rotational
symmetry number l.

Since the N projections together span the space, the
projected modes include all guided modes, and the parti-
tion by rotation number is complete, regardless of
whether a waveguide has reflection symmetry. Thus the
minimum computational sector for an eigenmode need be
no larger than 1/Nth of the total space. A typical MOF
with six fold rotational and reflection symmetry has, for
example, a degenerate fundamental mode pair. If parti-
tioned as prescribed above, the two modes have rotation
numbers l 5 61, giving relations such as

Ez~Rp/3r! 5 exp~6ip/3!Ez~r! ~l 5 61 mode!.
(10)

One might think of the (l 5 61) as circularly polarized
modes, while quadrant-based class 3 and 4 modes are the
corresponding linearly polarized superpositions. The
fundamental can be calculated using one sixth of the
space, with substantial savings over a quadrant. Fur-
ther, when we replace the quadrant with rotation-number
partitioning, we get a cleaner separation of all classes.
For example, the quadrant-based calculation as described
previously13 fails to separate class 7 from class 3 modes
without additional processing steps. Using rotational
partitioning, class 3 modes (l 5 1) are separate from
class 7 modes (l 5 3).

Further partitioning is possible for the nondegenerate
modes, based on reflection symmetry. Classes 1, 2, 7,
and 8 as described previously13 already have the most ef-
ficient computational sectors. For these classes, each
mode has the full rotational and reflection symmetry of
the waveguide. This is tied to the nondegenerate nature
of the modes9 and depends on whether the flip operation
maps a rotation class onto itself. For example, since the
flip operation maps the l 5 1 subspace onto the l 5 21
subspace, it is clear that no mode of either subspace can
have reflection symmetry. On the other hand, the l 5 0
sector flips onto itself and can be partitioned into modes
symmetric and antisymmetric upon reflection.
B. Implementation of Revised Classes
Quadrant symmetry for the fundamental mode has ap-
parently been used in previous calculations not only using
the multipole method,9 but nearly all numerical methods,
including finite element11 and the efficient-modal
method.7 One recent vector wave expansion method is
perhaps the only exception.10 Quadrant-based methods
result in larger matrix computations and fail to cleanly
separate the classes; the quadrant method described in
Ref. 13 finds modes of class 7 when searching for class 3
modes, class 8 when searching for 4, and so forth. This
failure can lead to serious problems when modes of differ-
ent classes have similar propagation constants.

Application of the proposed symmetry treatment to fi-
nite element and other methods should be extremely
straightforward. In fact, the relevant symmetry opera-
tions have already been discussed in Table 1 and mode
equations Eqs. (7) and (8). Implementing the symmetry
reduction will require some care in defining the basic field
representation. It is assumed in Table 1, for example,
that the sampled grid of position vectors (finite element)
or k vectors (plane wave) rotates onto itself. As discussed
previously17 (for similar reasons), the grid should be de-
fined so that Rr is a grid point whenever r is.

It is worth noting that any effort spent on coding
quadrant-based symmetry groups is not wasted. They
are the most efficient partition for C2v waveguides, such
as dual-core couplers and various birefringent fiber de-
signs.

4. EXAMPLE: MANY-MODED AIR-CORE
FIBER
The advantages of the proposed symmetry implementa-
tion are now demonstrated with an air-core fiber example.
For air-core fibers, accurate modeling of nearly degener-
ate modes is crucial even if single-mode operation is de-
sirable, since unwanted glass-guided modes near the core
are a major impairment.8

The multipole mode solver was used to calculate
bandgap-confined modes of an air-core fiber with a three-
ring cladding of holes (diameter d 5 2 mm, spacing L
5 2.5 mm) surrounding a circular air core. Figure 1
shows several calculated mode lines within the bandgap,
along with a guideline (dashed) indicating the approxi-
mate index and slope we would expect from a fundamen-
tal core mode. This rough guideline can be obtained ana-
lytically simply by using solutions of a perfectly
conducting waveguide of an appropriate size. The inflec-
tion of class 3 and 4 modes (bold lines) near the dashed
line is characteristic of a core-confined fundamental
mode,18 as expected, but generally the mode structure is
dominated by the unwanted glass-guided modes confined
to the webs near the core. This is an example of a poor
air-core design plagued by unwanted modes. The inten-
sities for typical quasi-fundamental and a glass-guided
modes are shown in Fig. 2 and clearly identify these as
air-guided and glass-guided modes, respectively.

For such a multimode structure, failure to cleanly sepa-
rate the mode classes can cripple the simulation. This is
shown in the lower part of Fig. 1, where mode lines for an
identical MOF structure have been calculating using an
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identical mode-finding procedure, but using the quadrant-
based symmetry classes for degenerate classes 3, 4, 5, and
6 instead of the l 5 61, 62 versions. We see that the
quadrant-based classes not only cause confusion at the
crossing of mode lines (interrupting the quasi-
fundamental mode line) but also lead to one mode line be-
ing entirely omitted (location shown by arrows).

To understand the problem, recall that the central cal-
culation of the multipole mode solver is to find a matrix
singularity. If vector b is a multipole representation of
the field, the mode condition takes the form13 M(l, kz)b
5 0. A mode is identified by a dip in the singular value
or determinant of M at kz 5 2pneff /l. Figure 3 plots
det(M) as a function of neff for several symmetry classes
at wavelength l 5 1.410. The plot has several interest-
ing features: First, the simulations confirm that the
‘‘quadrant’’ class 4 calculation is a composite of the class 8
and (l 5 2) calculation. The determinants are appar-
ently related by simple multiplication: udet(M4quad)u
' udet(M8)det(Ml51)u. Second, we see that the com-
bined class 4 makes it more difficult to extract informa-
tion about the modes. A simple search for minima will

Fig. 1. Mode lines of this air-core microstructure fiber are
shown in the region of the l –neff plot, where the bandgap (un-
shaded region) crosses neff 5 1. Mode structure is primarily
dominated by unwanted glass-guided modes.
overlook one of the two class 8 ‘‘dips.’’ The quadrant-
symmetry calculation is prone to overlooked modes and
qualitatively inaccurate results, unless more sophisti-
cated processing is applied.

The quadrant-based calculation fails, in part, because
these particular modes are poorly confined and do not
have sharp dips on the real-neff line. The problem is
eliminated, in this case, if more rings of holes are added,
giving lower-loss and sharper dips; however, this is at a
much greater cost in CPU time. The cleaner symmetry
separation, on the one hand, allows a quick preliminary
mode analysis (of a smaller cladding) to guide a full,
many-hole structure. On the other hand, other struc-
tures, including multicore fibers, will face even more se-
vere difficulties without proper symmetry treatment be-
cause of a greater number of modes with similar effective
indices.

Savings in computation time depend on various details
of the calculation. In one example, calculating det(M) for
all classes of a five-ring MOF structure gave a factor of 2
savings in computation time.

Fig. 2. Calculated intensity profiles show two modes with neff
' 0.98, a fundamental core mode at l 5 1.44 (center), and a sur-
face mode at l 5 1.42, guided primarily in glass webs (right).
Holes are shown dashed.

Fig. 3. Determinant of the mode-condition matrix is plotted ver-
sus neff for three subspaces: class 8, class 4 quadrant, and class
4 rotation (l 5 1). The product relation is indicated by the
agreement between ‘x’ symbols and the solid curve.
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5. ROTATION-ONLY SYMMETRY EXAMPLE
Rotation-based symmetry reduction of simulations has
one additional motivation: It can be used for structures
that have rotational symmetry but no reflection symme-
try. A final example with C6 resembles the ‘‘satellite fi-
ber’’ discussed previously,9 an ordinary triangular-lattice
fiber with additional small cylinders of high-index mate-
rial included near the edge of the core region. Figure 4
shows the geometry and effective index plot of this fiber
(right), compared with a similar fiber without the high-
index inclusions (left). The unshaded region between the
silica index (set to 1.45 for simplicity) and the effective
cladding index (obtained from Bloch analysis) is available
for index confinement in a silica core. The first higher-
order mode group crosses from this confinement region to
the shaded cladding-mode region.

The results for the satellite fiber agree with our physi-
cally intuitive understanding of this structure. At short
wavelengths, the high-index regions act like individual
stepindex cores (weakly coupled to each other and the air
holes), and so the lowest-order mode lines converge to the
well-known analytical solutions of a step-index fiber
(shown dashed and labeled ‘‘SIF solution’’). At long

Fig. 4. Simulated effective index of a typical microstructure fi-
ber (left) is compared with the similar ‘‘satellite fiber’’ (right),
demonstrating the applicability of the revised symmetry classes
to fibers with no reflection symmetry. Both fibers have a two-
ring cladding of air holes with spacing L 5 2 mm and diameter
d 5 1.3 mm. The satellite fiber includes small high-index inclu-
sions at the periphery of the core region (index 2.0, radius '0.1
mm). The inclusions act as waveguides at short wavelengths
and perturbations at long wavelengths.
wavelengths, the tiny high-index regions become a small
perturbation, and the mode lines approach the solutions
of the simple two-ring MOF (shown in the left figure).

For the C6 structure, all six rotational symmetry
classes are defined according to Table 1, not just the de-
generate classes. This has the unfortunate result that
the rotation classes with l 5 0 and l 5 3 can no longer be
partitioned according to reflection parity. For example,
the near degeneracy of the TE-like and TM-like modes
can be a nuisance. This is inevitable since the structure
fundamentally does not have reflection symmetry; it is
not a product of the proposed symmetry classes. A num-
ber of approaches can be taken to distinguish these
modes, when necessary.

6. CONCLUSIONS
A revised implementation of symmetry classes has been
proposed for simulating the most common class of micro-
structure fibers, those of sixfold rotational and reflection
symmetry. As demonstrated in an example air-core fiber
simulation, the revised classes give important advantages
in cleanly separating nearly degenerate modes of a mul-
timode waveguide.

The application of the revised symmetry classes to sev-
eral common mode-solving methods has been outlined in
brief. Implementing the revision should be straightfor-
ward and present similar advantages to those demon-
strated. In addition, once implemented, the revised
classes allow simulation of rotationally symmetric struc-
tures with and without reflection symmetry, with no ad-
ditional changes to the simulation codes. We have dem-
onstrated application of such a multipole code to a
‘‘satellite’’ type fiber. This demonstrates that some addi-
tional design freedom can be obtained in searching for op-
timized structures, without moving to much slower simu-
lations assuming no symmetry.
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