
Improved Error Reporting and
Thread-Safe Use of the SNMP Library

There is a need in some environments to support multiple threads in a
single application. The SNMP Library provides the Single Session
functions which support thread-safe operation when certain precautions
are taken. This document describes the operation of the SNMP Library
with a focus on its session management functions. The Traditional API
and the Single API functions are compared and contrasted.
A working understanding of the CMU or UCD SNMP Library API is
recommended to fully appreciate the concepts discussed.
The document ends with a list of restrictions for using the Single API
in a multi-threaded application.

Unfortunately, the SNMPv3 support was added about the same time as the
thread support and since they occurred in parallel the SNMPv3 support
was never checked for multi-threading correctness. It is most likely
that it is not thread-safe at this time.

***** IMPORTANT ANNOUNCEMENT *****
To the point, no resource locks are applied within the SNMP
Library.
The APDU encoding and some session management functions can
be used in thread-safe manners. The MIB file parsing is not
thread-safe.
The Single Session API was made available in November 1998.
Existing applications use the Traditional API, which is not
thread-safe.
The thread-safe considerations are discussed throughout this
document.

The research and development of the Single Session API that I've
completed was wholly funded by my employer, Internet Security Systems,
Inc. and is distributed freely to the Internet community.

-Mike Slifcak, 23 April 1999

09 July 1999 Removed references to snmp_synch_setup and
snmp_synch_reset

Availability

The Single Session API is integrated into the currently available
versions of the CMU SNMP library and the UC-Davis SNMP package.

 ftp://ftp.net.cmu.edu/pub/snmp/cmu-snmp-V1.13.tar.gz and later
 Read: snmp_sess_api.3, Changes.SingleSession

 ftp://ucd-snmp.ucdavis.edu/ucd-snmp-3.6.tar.gz and later
 Read: snmp_sess_api.3, README.thread (after version 3.6.1)

Both libraries work equally well in Windows NT and various UNIX
platforms. Please read this document and refer to the snmp_sess_api
section 3 manual page.

Glossary of Terms

APDU Application Protocol Data Unit
API Application Programming Interface
CMU Carnegie-Mellon University, Pittsburgh, PA.
Library The SNMP library; Both CMU and UCD versions are applicable.
Session Concept embodying the management of transacting SNMP APDUS.
SNMP Simple Network Management Protocol
UCD University of California at Davis, CA.

Introduction

The Library extends the UNIX file concept (open, close, read, write) to
a Session.
Opening a Session binds a local socket to a well-known port and creates
internal structures to help with controlling the transaction of SNMP
APDUs. Closing a Session releases the memory and system resources used
for these purposes.

Since the mid-1980s, many SNMP applications have used the Traditional
Session API to transact SNMP APDUs between the local host and SNMP-
enabled devices.

 The Traditional Session API does not support multi-threaded
applications:

 1) There are no resource locks to prevent exposing the Library's

global data resources to corruption in a multi-threaded application;

 2) The Traditional API functions that receive SNMP APDUs do not

provide an interface for one of many sessions;

 3) Errors discovered by the Library are communicated through global

data structures and are not associated with the session in which
the error occurred.

 The Single Session API provides these capabilities:

 1) Manage a single SNMP session safely, in multi-threaded or non-

threaded applications, by avoiding access to data structures that
the Traditional Session API may share between Sessions;

 2) Associate errors with the session context for threaded and non-

threaded applications.

Contrasting and Comparing Traditional API and Single API

The Traditional API uses the struct snmp_session pointer returned from
snmp_open() to identify one SNMP session. The Single API uses the
opaque pointer returned from snmp_sess_open() to identify one SNMP
session.

 Helpful Hint: The Library copies the contents of the structure which
is input to snmp_open() and snmp_sess_open().
 Once copied, changing that input structure's data has no effect on
the opened SNMP Session.

The Traditional API uses the snmp_error() function to identify any
library and system errors that occurred during the processing for one
SNMP session. The Single API uses snmp_sess_error() for the same
purpose.

The Traditional API manages the private Sessions list structure; adding
to the list during snmp_open(), removing during snmp_close.

With few exceptions, the Traditional API calls the Single API for each
session that appears on the Sessions list.

The Traditional API reads from all Sessions on the Sessions list;
The Single API does not use the Sessions list.
The Single API can read from only one Session.

 Helpful Hint:
 This is the basis for thread-safe-ness of the Library.
 There is no resource lock applied.

Using the Single API

A multi-threaded application that deploys the SNMP Library should
complete all MIB file parsing before additional threads are activated.
Drawing from the parsed contents of the MIB does not incur any data
corruption exposure once the internal MIB structures are initialized.

The application may create threads such that a single thread may manage
a single SNMP session. The thread should call snmp_sess_init() to
prepare a struct snmp_session structure. The thread can adjust session
parameters such as the remote UDP port or the local UDP port, which
must be set prior to invoking snmp_sess_open().

The first call to snmp_sess_init() initializes the SNMP Library,
including the MIB parse trees, before any SNMP sessions are created.
Applications that call snmp_sess_init() do not need to read MIBs nor
setup environment variables to utilize the Library.

After the struct snmp_session is setup, the thread must call
snmp_sess_open() to create an SNMP session. If at any time the thread
must change the Session configuration, snmp_sess_session() returns the
pointer to the internal configuration structure (a struct snmp_session,
copied from snmp_sess_open).
The thread can adjust parameters such as the session timeout or the
community string with this returned struct snmp_session pointer.
Changes to the remote or local port values have no effect on an opened
Session.

The thread can build PDUs and bind variables to PDUs, as it performs
its duties.
The thread then calls snmp_sess_send() or snmp_sess_async_send() to
build and send an SNMP APDU to the remote device. If a Get-Response-PDU
is expected, the thread should call snmp_sess_synch_response() instead.

When the thread is finished using the session, it must free the
resources that the Library used to manage the session.

Finally, the thread must call snmp_sess_close() to end the Session.

Snmp_sess_init(), snmp_open(), and snmp_sess_open() must use the same
calling parameter for a given Session.
Other methods should use only the returned parameter from snmp_open()
and snmp_sess_open() to access the opened SNMP Session.

Error Processing

Two calls were added: snmp_error() and snmp_sess_error() return the
"errno" and "snmp_errno" values from the per session data, and a string
that describes the errors that they represent. The string must be freed
by the caller.

Use snmp_error() to process failures after Traditional API calls, or
snmp_sess_error() to process failure after Single API calls.
In the case where an SNMP session could not be opened, call snmp_error()
using the struct snmp_session supplied to either snmp_open() or
snmp_sess_open().

The following variables and functions are obsolete and may create
problems in a multi-threaded application:

 int snmp_errno
 char * snmp_detail
 snmp_set_detail()
 snmp_api_errstring()

Function Summary

The functions in the following table are functionally equivalent, with
the exception of these behaviors:
- The Traditional API manages many sessions
- The Traditional API passes a struct snmp_session pointer, and touches
the Sessions list

- The Single API manages only one session
- The Single API passes an opaque pointer, and does not use Sessions
list

 Traditional Single Comment
 =========== ============== =======
 snmp_sess_init snmp_sess_init Call before either open
 snmp_open snmp_sess_open Single not on Sessions

list
 snmp_sess_session Exposes snmp_session

pointer
 snmp_send snmp_sess_send Send one APDU
 snmp_async_send snmp_sess_async_send Send one APDU with

callback
 snmp_select_info snmp_sess_select_info Which session(s) have

input
 snmp_read snmp_sess_read Read APDUs
 snmp_timeout snmp_sess_timeout Check for timeout

 snmp_close snmp_sess_close Single not on Sessions
list

 snmp_synch_response snmp_sess_synch_response Send/receive one APDU
 snmp_error snmp_sess_error Get library,system errno

Example 1 : Traditional API use.

 #include "snmp_api.h"
 ...
 int liberr, syserr;
 char *errstr;
 struct snmp_session Session, *sptr;
 ...
 snmp_sess_init(&Session);
 Session.peername = "foo.bar.net";
 sptr = snmp_open(&Session);
 if (sptr == NULL) {
 /* Error codes found in open calling argument */
 snmp_error(&Session, &liberr, &syserr, &errstr);
 printf("SNMP create error %s.\n", errstr);
 free(errstr);
 return 0;
 }
 /* Pass sptr to snmp_error from here forward */
 ...
 /* Change the community name */
 free(sptr->community);
 sptr->community = strdup("public");
 sptr->community_len = strlen("public");
 ...
 if (0 == snmp_send(sptr, pdu)) {
 snmp_error(sptr, &liberr, &syserr, &errstr);
 printf("SNMP write error %s.\n", errstr);
 free(errstr);
 return 0;
 }
 snmp_close(sptr);

Example 2 : Single API use.

 #include "snmp_api.h"
 ...
 int liberr, syserr;
 char *errstr;
 void *sessp; /* <-- an opaque pointer, not a struct pointer */
 struct snmp_session Session, *sptr;
 ...
 snmp_sess_init(&Session);
 Session.peername = "foo.bar.net";
 sessp = snmp_sess_open(&Session);
 if (sessp == NULL) {
 /* Error codes found in open calling argument */
 snmp_error(&Session, &liberr, &syserr, &errstr);
 printf("SNMP create error %s.\n", errstr);
 free(errstr);

 return 0;
 }
 sptr = snmp_sess_session(sessp); /* <-- get the snmp_session
pointer */

 /* Pass sptr to snmp_sess_error from here forward */
 ...
 /* Change the community name */
 free(sptr->community);
 sptr->community = strdup("public");
 sptr->community_len = strlen("public");
 ...
 if (0 == snmp_sess_send(sessp, pdu)) {
 snmp_sess_error(sessp, &liberr, &syserr, &errstr);
 printf("SNMP write error %s.\n", errstr);
 free(errstr);
 return 0;
 }
 snmp_sess_close(sessp);

Example 3. Differences Between Traditional API and Single API Usage
5a6
> void *sessp; /* <-- an opaque pointer, not a struct pointer */
11,13c12,14
< sptr = snmp_open(&Session);
< if (sptr == NULL) {

> sessp = snmp_sess_open(&Session);
> if (sessp == NULL) {
19c20,22
< /* Pass sptr to snmp_error from here forward */

> sptr = snmp_sess_session(sessp); /* <-- get the snmp_session
pointer */
>
> /* Pass sptr to snmp_sess_error from here forward */
26,27c29,30
< if (0 == snmp_send(sptr, pdu)) {
< snmp_error(sptr, &liberr, &syserr, &errstr);

> if (0 == snmp_sess_send(sessp, pdu)) {
> snmp_sess_error(sessp, &liberr, &syserr, &errstr);
33c36
< snmp_close(sptr);

> snmp_sess_close(sessp);

Restrictions on Multi-threaded Use of the SNMP Library

 1. Invoke SOCK_STARTUP or SOCK_CLEANUP from the main thread only.

 2. The MIB parsing functions use global shared data and are not

multi-thread safe when the MIB tree is under construction.
 Once the tree is built, the data can be safely referenced from any

thread. There is no provision for freeing the MIB tree.
 Suggestion: Read the MIB files before an SNMP session is created.

 This can be accomplished by invoking snmp_sess_init from the main
 thread and discarding the buffer which is initialized.

 3. Invoke the SNMPv2p initialization before an SNMP session is

created,for reasons similar to reading the MIB file.
 The SNMPv2p structures should be available to all SNMP sessions.
 CAUTION: These structures have not been tested in a multi-threaded

application.

 4. Sessions created using the Single API do not interact with other

SNMP sessions. If you choose to use Traditional API calls, call
them from a single thread. The Library cannot reference an SNMP
session using both Traditional and Single API calls.

 5. Using the callback mechanism for asynchronous response PDUs

requires additional caution in a multi-threaded application. This
means a callback function probably should probably not use Single
API calls to further process the session.

 6. Each call to snmp_sess_open() creates an IDS. Only a call to

snmp_sess_close() releases the resources used by the IDS.

