
SLAC National Accelerator Laboratory

TID AIR

LCLS Beam-Synchronous Acquisition Core Software

Till Straumann

July 10, 2018

1 Introduction
The SLAC “Beam-Synchronous Acquisition” (BSA) facility enables users to acquire readings
across the entire machine in a synchronous fashion for a well-defined (albeit limited) number
of beam pulses. The set of beam pulses on which data shall be acquired is called an “Event
Definition” or “EDEF”. Only a small number (the exact value differs between LCLS-1
and LCLS-2) of independent EDEFs is available and users have to coordinate access to
this limited resource. The exact selection criteria (such as beam rate, time-slot etc.) for a
particular beam-pulse to be included in an EDEF is beyond the scope of this document.

For each beam-pulse a bit-mask is broadcast over the timing-system (together with time-
stamp and other information). Each bit represents one EDEF and communicates whether
data acquired for the respective beam-pulse shall or shall not be stored in the BSA facility.
An EDEF with its correspoinding bit set to ‘1’ is called “active”. Thus, on every beam-pulse
data may be stored for zero, one or more active EDEFs. Therefore, the data store in BSA
may be visualized as a two-dimensional array of buffers with each row representing a data
source and each column representing an EDEF (fig. 2). When a new data item arrives it is
dropped into all the columns that are active within the row corresponding to the particular
data source.

An additional feature of the EDEFs is that data may be averaged. In fact, the timing system
broadcasts additional bitmasks (along with the “active” mask) to support averaging as
well as hints for how data with abnormal status shall be handled by BSA.

Once all the data requested by an EDEF are stored in BSA buffers they can be downloaded
by the user (usually via EPICS).

The BsaCore software implements the functionality described above and has three interfaces
(see fig. 1):

Revision DRAFT-0-1
Page 1 of 19

SLAC National Accelerator Laboratory

TID AIR

Figure 1. BsaCore with APIs and surrounding modules.

Figure 2. Data-store “matrix”. Incoming data are “dropped” (stored) into the boxes
corresponding to active EDEFs 2 and 4, respectively.

Revision DRAFT-0-1
Page 2 of 19

SLAC National Accelerator Laboratory

TID AIR

1. with the timing system in order to receive the BSA-related bit-masks as well as the
time-stamp.

2. with the data source from which BSA receives time-stamped data items.

3. with one (or more) data sinks that consume the filtered BSA data.

The legacy implementation of BSA was based on EPICS record-processing and had stringent
real-time requirements which were often difficult to meet. This led to data loss and
inconsistencies with data sets across multiple systems no longer being synchronous.

The BsaCore implementation discussed in this document aims at improving the behaviour
by introducing various levels of buffering that allow for relaxing the real-time requirements
significantly. Multi-threaded parallelism improves throughput on multi-core CPUs.

Note that in the context of lcls2 the BsaCore software discussed here is only responsible for
slow data sources which can be processed in software. BSA for high-performance systems
(HPS) which is delegated largely to FPGA firmware is handled by a different software
module, not BsaCore.

2 Requirements
The following list of requirements/design-goals was defined for BsaCore:

Modularization The legacy BSA implementation was tightly coupled with the timing
system (which in-turn was tied to the support of a specific hardware). For obvious
reasons this monolithic approach is problematic and a new BSA implementation
should become an independent module with well-defined interfaces.

Support for LCLS-i as well as LCLS-ii The BSA API as well as its implementation should
be able to support LCLS-i as well as (slow) LCLS-ii devices and timing.

Backwards Compatibility The design of BSA should allow for an easy migration path for
existing (LCLS-i) applications. Ideally, it should be possible to port an IOC application
without making any changes, i.e., it should be sufficient to link against new libraries1.

BsaCore Software EPICS agnostic The BsaCore software should be a stand-alone compo-
nent and avoid the use of EPICS records.

Reduce RT-Requirements The BsaCore software design should reduce real-time process-
ing requirements as much as possible.

1This approach would, however, require a minimal amount of EPICS record-processing in real time; with
small modifications to the application such record-processing can be avoided.

Revision DRAFT-0-1
Page 3 of 19

SLAC National Accelerator Laboratory

TID AIR

C-Language API The BsaCore APIs shall use the C-language.

3 API
Three interfaces are defined for the BsaCore (see fig. 1):

Timing System which notifies the core of the arrival of a new timing pattern (time-stamp
and BSA-relevant bit-masks).

Data Source which notifies the core of the arrival of a new, time-stamped data item. The
data may be discarded or stored for one or more EDEFs, depending on the flags
contained in the pattern with a time-stamp that matches the data time-stamp.

Data Sink is notified by BsaCore by means of a user-defined callback that filtered and
averaged BSA data are available for consumption.

These APIs shall now be described in more detail.

3.1 Timing API
BsaCore defines an indirect method of registering a callback function with the timing
system. The timing system’s API defines a callback which is executed on arrival of each
fiducial:
/ ∗ ∗
∗ BSA Timing Pat te rn data
∗ /

typedef s t r u c t BsaTimingData
{

TimingPulseId pulseId ; /∗∗ < 64 b i t pulseId ∗ /
epicsTimeStamp timeStamp ; /∗∗ < TimeStamp f o r t h i s BSA timing data ∗ /
u i n t 6 4 t edefInitMask ; /∗∗ < EDEF i n i t i a l i z e d mask ∗ /
u i n t 6 4 t edefActiveMask ; /∗∗ < EDEF a c t i v e mask ∗ /
u i n t 6 4 t edefAvgDoneMask ; /∗∗ < EDEF average−done mask ∗ /
u i n t 6 4 t edefAllDoneMask ; /∗∗ < EDEF a l l −done mask ∗ /
u i n t 6 4 t edefUpdateMask ; /∗∗ < EDEF update mask ∗ /
u i n t 6 4 t edefMinorMask ; /∗∗ < EDEF minor s e v e r i t y mask ∗ /
u i n t 6 4 t edefMajorMask ; /∗∗ < EDEF major s e v e r i t y mask ∗ /

} BsaTimingData ;

/ ∗ ∗
∗ BsaTimingCallbacks get c a l l e d w/ 2 parameters
∗ − pUserPvt i s any pointer the c a l l b a c k c l i e n t needs to e s t a b l i s h contex t
∗ − pNewPattern i s a pointer to the new BSA timing data
∗

∗ Timing s e r v i c e s must guarantee the BSA timing pat te rn data in t h i s s t r u c t u r e i s a l l
∗ from the same beam pulse and does not change before the c a l l b a c k re turns .
∗ /

Revision DRAFT-0-1
Page 4 of 19

SLAC National Accelerator Laboratory

TID AIR

typedef void (∗ BsaTimingCallback) (void ∗ pUserPvt , const BsaTimingData ∗ pNewPattern) ;

/ ∗ ∗
∗ RegisterBsaTimingCallback i s c a l l e d by the BSA c l i e n t to r e g i s t e r a c a l l b a c k funct ion
∗ f o r new BsaTimingData .
∗

∗ The pUserPvt pointer can be used to e s t a b l i s h contex t or s e t to 0 i f not needed .
∗

∗ Timing s e r v i c e s must support t h i s RegisterBsaTimingCal lback () func t ion and c a l l
∗ the c a l l b a c k funct ion once f o r each new BsaTimingData to be compliant w/ t h i s
∗ t iming BSA API .
∗

∗ The Timing s e r v i c e may support more than one BSA c l i e n t , but i s allowed to r e f u s e
∗ attempts to r e g i s t e r mult ip le BSA c a l l b a c k s .
∗

∗ Each timing s e r v i c e should provide i t ’ s timing BSA code using a unique l i b r a r y name
∗ so we can have EPICS IOC ’ s t h a t bui ld a p p l i c a t i o n s f o r mult ip le timing s e r v i c e types .
∗ /

extern i n t RegisterBsaTimingCallback (BsaTimingCallback ca l lback , void ∗ pUserPvt) ;

and BsaCore provides an implementation of this callback which is not directly exposed,
however. Instead, the user must connect the callback to the timing system by calling
/ ∗ ∗
∗ Obtain the timing c a l l b a c k funct ion provided by BSA
∗ /

i n t
BSA TimingCallbackRegister (i n t (∗ r e g i s t r a r) (BsaTimingCallback , void ∗)) ;

where usually RegisterBsaTimingCallback (note that this function is exported by the
timing system whereas BSA TimingCallbackRegister is provided by BsaCore()) is passed
as the registrar argument:
include <bsaApi . h>

. . .
s t a t u s = BSA TimingCallbackRegister (RegisterBsaTimingCallback) ;
. . .

This way of indirect registration ensures that a valid “context” is always passed to
RegisterBsaTimingCallback.

3.2 Channels
BSA-sources or -sinks are associated with channels. A BSA channel identifies a particular
data source that is acquired into BSA. A channel corresponds to a row in the two-dimensional
array mentioned in the introduction (the columns of this array represent EDEFs). Channels
are identified by IDs which are arbitrary, user-defined strings (names). An EPICS PV name
is customarily used as an ID.

Revision DRAFT-0-1
Page 5 of 19

SLAC National Accelerator Laboratory

TID AIR

The following entry points are defined for creating and identifying channels:
/ ∗ ∗
∗ Create or f ind a BsaChannel . I f a channel with the given ID already
∗ e x i s t s then a handle f o r the e x i s t i n g channel i s returned . Otherwise
∗ the handle f o r a newly crea ted channel i s returned .
∗ /

BsaChannel BSA CreateChannel (const char ∗ id) ;

/ ∗ ∗
∗ Look up a BsaChannel . I f a channel with the given ID already
∗ e x i s t s then a handle f o r the e x i s t i n g channel i s returned .
∗ Otherwise NULL i s returned .
∗ /

BsaChannel BSA FindChannel (const char ∗ id) ;

/ ∗ ∗
∗ Get the ID of a channel .
∗ /

const char ∗BSA GetChannelID (BsaChannel channel) ;

3.3 Data Source API
Every time a data source (associated with a BSA channel) produces fresh data it must
notify the BsaCore by calling BSA StoreData(), providing a timestamp as well as status
information:
/ ∗ ∗
∗ Returns 0 on success , nonzero on e r r o r .
∗ /

i n t
BSA StoreData (

BsaChannel bsaChannel ,
epicsTimeStamp timeStamp ,
double value ,
BsaSta t s ta tus ,
BsaSevr s e v e r i t y

) ;

Note that currently only IEEE double-precision floating point values are supported.

For convenience, BsaCore exports a routine to determine status and severity based on
comparing a value to “alarm limits”. This routine replicates the (unfortunately non-public)
algorithm used by EPICS’ AI-record:
typedef s t r u c t BsaAlarmLimitsStruct {

double lo lo , low , high , h i h i ;
double lalm , hyst ;
BsaSevr l l s v , lsv , hsv , hhsv ;

} BsaAlarmLimitsStruct , ∗ BsaAlarmLimits ;

/ ∗ ∗

Revision DRAFT-0-1
Page 6 of 19

SLAC National Accelerator Laboratory

TID AIR

∗ This rout ine i s intended to be f a s t ; i f
∗ a c c e s s to the BsaAlarmLimits needs to be
∗ protec ted the c a l l e r can employ a spin lock
∗ or mutex .
∗ NOTE: ’ laml ’ i s modified by t h i s rout ine .
∗ ’ s ta tus ’ and ’ s e v e r i t y ’ are updated
∗ (i . e . , they already must have va l id
∗ content s i n c e the s e v e r i t y i s only
∗ increased by t h i s rout ine) .
∗ /

void
BSA CheckAlarms (double val , BsaAlarmLimits l e v e l s , BsaS ta t ∗ s ta tus , BsaSevr ∗ s e v e r i t y) ;

3.4 Data Sink API
A BsaCore sink consumes averaged and decimated (“filtered”) BSA data. These data
are aggregated with additional information such as time-stamp, the number of averaged
readings and status information. The user registers a callback table with BsaCore and is
notified when certain events occur:

• when a new acquisition is started the OnInit() callback is executed and provided a
time-stamp which identifies the pulse on which the acquisition starts.

• when new results become available the OnResult() callback is invoked from the
context of a worker thread. Note that under some circumstances multiple results are
aggregated and passed to this callback for sake of efficiency.

• when an acquisition is terminated abnormally then OnAbort() is invoked with
additional status information.

Fig. 3 illustrates the flow of execution of the various callbacks. A sink (callback table) is
registered with
/ ∗
∗ R e g i s t e r a s ink with a BSA channel f o r a given EDEF index .
∗

∗ ’ maxResults ’ s p e c i f i e s how many r e s u l t s may be del ivered
∗ to a s i n g l e c a l l of ’ OnResult ’ .
∗

∗ Returns : s t a t u s (0 == OK)
∗ /

i n t
BSA AddSimpleSink (

BsaChannel bsaChannel ,
BsaEdef edefIndex ,
BsaSimpleDataSink sink ,
void ∗ c losure ,
unsigned maxResults

) ;

Revision DRAFT-0-1
Page 7 of 19

SLAC National Accelerator Laboratory

TID AIR

A sink is added for a specific channel and a specific EDEF, i.e., to an individual “cell” in
the two-dimensional matrix mentioned in the introduction.

Note that multiple sinks can be attached to each such “cell”, i.e., the same channel/EDEF
combination may have multiple sinks attached. BsaCore iterates over all the sinks when a
relevant events needs to be dispatched.

The maxResults argument specifies how many “results” BsaCore may accumulate before
dispatching the OnResults() callback. This merely sets a limit but BsaCore may actually
deliver less than this limit. It is thus mandatory that the user check the actual number of
results by inspecting the respective argument to the OnResults() callback.

Aggregation of results is desirable for efficiency reasons.

If maxResults is set to zero then the implementation is free to pick a value.

The complete prototypes for the callbacks as well as type definitions of the arguments to
BSA AddSimpleSink() can be found in the appendix or the current version of the BsaApi.h
header.

4 Implementation Notes
In this section we discuss some features of BsaCore which are not reflected in the API but
are related to the implementation.

4.1 Backwards Compatibility and Latency Remarks
One design goal for BsaCore was backwards compatibility, i.e., making it easy to switch
from the legacy, EPICS-record based implementation to BsaCore without changing the
upper-layer EPICS-record interface which interacts with the user.

However, since another design goal was relaxing the real-time requirements any user
application which implicitly or explicitly relies on BSA processing in real-time will most
likely be impacted by a switch from legacy BSA to BsaCore.

Relaxing the real-time constraints required the introduction of several layers of buffering
(see fig. 4) within BsaCore which has the consequence that the timing at which BSA results
are published are more relaxed than with the legacy implementation. This relaxed timing
is in addition to any networking delays that a remote user (EPICS OPI) may observe. In
particular, there is no guaranteed latency from data being stored into BsaCore to when
processed results are published to the sink(s).

Revision DRAFT-0-1
Page 8 of 19

SLAC National Accelerator Laboratory

TID AIR

Figure 3. UML sequence diagram showing registration and execution of callbacks. Note
that in the BsaCore there are multiple threads of execution; boxes on life-line represent
sequential execution from a single thread. I.e., OnInit() is guaranteed to precede (one or
more calls of OnResult() associated with the same acquisition).

Revision DRAFT-0-1
Page 9 of 19

SLAC National Accelerator Laboratory

TID AIR

Figure 4. BsaCore implementation details. Timing patterns and raw data samples are
stored in ring-buffers for deferred processing. A thread pool filters and averages raw data
and feeds the sink API via output buffers.

E.g., the author has heard of users who are using a PV hosted on the EVG to synchronize
with termination of BSA. I.e., it was assumed that all (distributed!) BSA data (for a particular
EDEF) are available as soon as the aforementioned EVG PV indicated that the EVG had
finished the EDEF in question. Obviously, this method relies on real-time processing of
BSA on all the IOCs.

A more robust algorithm for synchronizing BSA buffers would e.g, monitor the number of
elements acquired and synchronize the main thread:
monitor :

i f (number of elements >= desired) then
/ / read the a c t u a l data
c a g e t b s a c h a n n e l (t h i s c h a n n e l) ;
i f (0 == a t o m i c c l e a r f l a g (th i s c ha nn e l , &outstanding mask) then

/ / l a s t monitor ge ts the desired number of elements s i g n a l s
s i g n a l () ;

end i f
endi f

s t a r t e d e f a n d w a i t :
a t o m i c s e t f l a g (a l l channels mask , &outstanding mask) ;
s t a r t e d e f () ;
w a i t f o r s i g n a l o r t i m e o u t () ;

Revision DRAFT-0-1
Page 10 of 19

SLAC National Accelerator Laboratory

TID AIR

4.2 BsaCore Configuration and Initialization
BsaCore uses lazy initialization, i.e., the software is initialized during the first execution of
BSA CreateChannel() or BSA FindChannel().

Several internal parameters of the BsaCore such as thread priorities and buffer depths can be
configured albeit only prior to initialization. The respective calls have the prefix BSA Config
and are listed in the BsaApi.h header. Note, however, that it is not recommended to change
default configuration (maybe with exception of the thread priorities).

4.2.1 Sink Timeout

A sink with maxResults > 1 may take a long time (if a BSA runs at a slow rate) or even
forever (if a BSA terminates before filling up the last aggregate of results) to update.
To prevent this from happening BsaCore periodically flushes all outstanding results
and ensures that users don’t have to wait excessively. This global period can be adjusted
(BSA ConfigSetUpdateTimeoutSecs()) but be aware that the default was chosen to provide
an optimal compromise between user-convenience and efficiency.

Revision DRAFT-0-1
Page 11 of 19

SLAC National Accelerator Laboratory

TID AIR

Appendix
The BSA API Header
i f n d e f BSA API H
def ine BSA API H

include <bsaCallbackApi . h>
include <s t d i o . h>

i f d e f c p l u s p l u s
extern ”C” {
endi f
/ ∗
∗ O b j e c t i v e s :
∗ − BSA s h a l l be a separa te module / l i b r a r y (unbundled from timing ,
∗ EPICS , data acq .) ;
∗ − i n t e r f a c e s to timing , data source , data sink via APIs
∗ − API should work f o r l c l s −1 and (slow) l c l s −2 timing
∗ − make migration of legacy l c l s −1 BSA easy
∗ − support low− l e v e l i n t e r f a c e f o r data sources (non−EPICS . E . g . ,
∗ a ATCA DAQ system might r e c e i v e pulse−ID / timestamp along with
∗ data)
∗ − EPICS / records layered on top of core API / implementation .
∗

∗

∗ A r c h i t e c t u r e :
∗

∗

∗ [Data Sink]
∗ ˆ
∗ | [Data Sink]
∗ | ˆ
∗ Data Sink API | | [Data Sink]
∗ | | ˆ
∗ | | |

∗ v v v
∗ −−−−−−−−−−−−− −−−−−−−−−−−−

∗ | Data Source | <−−−−−−−−> | |

∗ | (I n t e r n a l | Data SRC API | BSA Core |

∗ | TimeStamp) | −−−−−−> | |

∗ −−−−−−−−−−−−− | −−−−−−−−−−−−

∗ | ˆ
∗ −−−−−−−−−−−−− | | Timing API
∗ | Data Source | <−− v
∗ | (TimeStamp | −−−−−−−−−−−−−−

∗ | from EVR) | <−−−−−−−> | Timing (EVR) |
∗ −−−−−−−−−−−−− −−−−−−−−−−−−−−

∗

∗ Timing API : The timing source provides the BSA core with bsa−r e l e v a n t timing
∗ information (EDEF bitmasks , timestamp , pulse−id) .
∗ Because BSA i s not n e c e s s a r i l y l inked to an a p p l i c a t i o n the
∗ i n t e r f a c e might be represented by a c a l l b a c k .
∗ A l t e r n a t i v e l y , a ’ no−BSA’ l i b r a r y of stubs could be added .
∗

∗ Data Source API : Data sources feed timestamped readings to the BSA core .

Revision DRAFT-0-1
Page 12 of 19

SLAC National Accelerator Laboratory

TID AIR

∗ The core then s t o r e s or discards these readings based on t h e i r
∗ unique pulseID / timestamp and q u a l i f i e r s a s s o c i a t e d with the
∗ pulseID / timestamp (which were obtained via the Timing API) .
∗

∗ Data Sink API : Data s inks consume BSA h i s t o r y data ; s inks are n o t i f i e d
∗ when e . g . , the h i s t o r y changes or a pre−defined number of
∗ i tems has been produced .
∗

∗ Rat iona le : The sketched API lends i t s e l f to an implementation which
∗ − keeps a h i s t o r y of BSA−r e l e v a n t timing data (obtained
∗ from the timing API)
∗ − when a data source s t o r e s a new (timestamped) item in
∗ BSA (via the SRC API) then the implementation can
∗ look up the timing data a s s o c i a t e d with the data ’ s
∗ pulseID and perform BSA operat ions (averaging , s t o r i n g)
∗ when appropriate .
∗ As long as timestamping the data can be done in rea l −time
∗ such a BSA implementation would be r a t h e r i n s e n s i t i v e to
∗ process ing l a t e n c i e s in BSA i t s e l f .
∗ /

include <s t d i n t . h>

typedef u i n t 6 4 t BsaPulseId ;

typedef u i n t 1 6 t BsaSevr ;
typedef i n t 1 6 t BsaSta t ;
typedef i n t 8 t BsaEdef ;

/ ∗
∗ Opaque BSA channel o b j e c t (s p e c i f i c to one v a r i a b l e)
∗ /

typedef s t r u c t BsaChannelImpl ∗BsaChannel ;

/ ∗
∗ Create or obta in a BsaChannel ; i f the same name i s used f o r
∗ a second time then the same BsaChannel i s returned (with incremented
∗ i n t e r n a l r e f e r e n c e count , i . e . , a l l i n s t a n c e s returned by
∗ BSA CreateChannel () must eventua l ly be r e l e a s e d (BSA ReleaseChannel) !) .
∗

∗ /
BsaChannel
BSA CreateChannel (

const char ∗ id
) ;

/ ∗
∗ Look up a channel ; re turns NULL i f not found .
∗

∗ NOTE: The r e f e r e n c e count i s incremented i f the
∗ channels was found , i . e . , the c a l l e r must
∗ eventua l ly BSA ReleaseChannel ()
∗ /

BsaChannel
BSA FindChannel (

const char ∗ id

Revision DRAFT-0-1
Page 13 of 19

SLAC National Accelerator Laboratory

TID AIR

) ;

/ ∗
∗ Decrement r e f e r e n c e count and r e l e a s e a l l resources a s s o c i a t e d
∗ with t h i s channel .
∗ /

void
BSA ReleaseChannel (

BsaChannel bsaChannel
) ;

/ ∗
∗ Get ID of a channel
∗ /

const char ∗
BSA GetChannelId (

BsaChannel bsaChannel
) ;

/ ∗
∗ Data Source API ; every time a data source has produced a
∗ new item i t can be stored in BSA with t h i s c a l l . Thus , a
∗ low− l e v e l dr iver may s t o r e data w/ o using any EPICS .
∗

∗ Returns : s t a t u s (0 == OK)
∗ /

i n t
BSA StoreData (

BsaChannel bsaChannel ,
epicsTimeStamp timeStamp ,

double value ,
BsaSta t s ta tus ,
BsaSevr s e v e r i t y

) ;

/ ∗
∗ Helper Routine (which r e p l i c a t e s EPICS ’ aiRecord ’ s ’ checkAlarms ’)
∗ /

typedef s t r u c t BsaAlarmLimitsStruct {
double lo lo , low , high , h i h i ;
double lalm , hyst ;
BsaSevr l l s v , lsv , hsv , hhsv ;

} BsaAlarmLimitsStruct , ∗ BsaAlarmLimits ;

/ ∗
∗ This rout ine i s intended to be f a s t ; i f
∗ a c c e s s to the BsaAlarmLimits needs to be
∗ protec ted the c a l l e r can employ a spin lock
∗ or mutex .
∗ NOTE: ’ laml ’ i s modified by t h i s rout ine .
∗ ’ s ta tus ’ and ’ s e v e r i t y ’ are updated
∗ (i . e . , they already must have va l id
∗ content s i n c e the s e v e r i t y i s only
∗ increased by t h i s rout ine) .
∗ /

void

Revision DRAFT-0-1
Page 14 of 19

SLAC National Accelerator Laboratory

TID AIR

BSA CheckAlarms (double val , BsaAlarmLimits l e v e l s , BsaS ta t ∗ s ta tus , BsaSevr ∗ s e v e r i t y) ;

/ ∗
∗ Data Sink API ;
∗

∗ Simple f i r s t vers ion −− assumes ∗ e x t e r n a l ∗ h i s t o r y b u f f e r s .
∗

∗ However , the separa t ion of Src and Sink APIs a l s o allows
∗ an implementation e . g . , to b u f f e r ’AvgDone ’ t r a n s a c t i o n s
∗ i n t e r n a l l y on a queue and dispatch the c a l l b a c k s of the
∗ Sink API from a worker thread so t h a t the execut ion
∗ of ’ BSA StoreData ’ and ’OnAvgDone’ are only l o o s e l y
∗ coupled :
∗

∗ BSA StoreData ()
∗ −> s t o r e s data on a (input) queue
∗

∗ BSA worker thread (s) ; works
∗ on input queue computing averages ;
∗ output i s s tored in output queue .
∗ −> s t o r e avgs . in output queue
∗

∗ Dispatcher thread works on
∗ output queue (s) and dispatches
∗ Sink c a l l b a c k s .
∗ /

s t r u c t B s a R e s u l t S t r u c t {
double avg ;
double rms ;
unsigned long count ;
unsigned long missed ; / / # of pulses with a c t i v e EDEF but no data was rece ived
epicsTimeStamp timeStamp ;
BsaPulseId pulseId ;
BsaSta t s t a t ;
BsaSevr sevr ;

} ;

typedef const s t r u c t B s a R e s u l t S t r u c t ∗ BsaResult ;

/ ∗
∗ Release a r e s u l t or an array of r e s u l t s ; the
∗ user may have t h e i r own queues to s t o r e r e s u l t s .
∗ When done , the r e s u l t must be r e l e a s e d .
∗

∗ Notes : Resul t s are read−only and could be shared
∗ by mult ip le s inks .
∗

∗ An array of r e s u l t s i s only r e l e a s e d once
∗ (the indiv idua l members are not r e l e a s e d)
∗ /

void
BSA ReleaseResults (

BsaResult r e s u l t s
) ;

Revision DRAFT-0-1
Page 15 of 19

SLAC National Accelerator Laboratory

TID AIR

s t r u c t BsaSimpleDataSinkStruct {
/ ∗ c a l l e d when a new BSA s t a r t s ∗ /
void (∗ OnInit) (

BsaChannel s e l f ,
const epicsTimeStamp ∗ ini tTime ,
void ∗ c l o s u r e

) ;

/ ∗ c a l l e d when one or more r e s u l t s are a v a i l a b l e
∗ to be consumed by t h i s s ink .
∗

∗ Note : ’ r e s u l t s ’ i s an array of mult ip le
∗ r e s u l t s then BSA ReleaseResults ()
∗ must only be c a l l e d once .
∗ /

void (∗OnResult) (
BsaChannel s e l f ,
BsaResult r e s u l t s ,
unsigned numResults ,
void ∗ c l o s u r e

) ;

/ ∗ c a l l e d with e r r o r s t a t u s (TBD) i f a BSA i s
∗ terminated .
∗ /

void (∗OnAbort) (
BsaChannel s e l f ,
const epicsTimeStamp ∗ ini tTime ,
i n t s ta tus ,
void ∗ c l o s u r e

) ;
} ;

typedef const s t r u c t BsaSimpleDataSinkStruct ∗ BsaSimpleDataSink ;

/ ∗
∗ R e g i s t e r a s ink with a BSA channel f o r a given EDEF index .
∗

∗ ’ maxResults ’ s p e c i f i e s how many r e s u l t s may be del ivered
∗ to a s i n g l e c a l l of ’ OnResult ’ .
∗

∗ Returns : s t a t u s (0 == OK)
∗ /

i n t
BSA AddSimpleSink (

BsaChannel bsaChannel ,
BsaEdef edefIndex ,
BsaSimpleDataSink sink ,
void ∗ c losure ,
unsigned maxResults

) ;

/ ∗
∗ Remove a sink
∗

Revision DRAFT-0-1
Page 16 of 19

SLAC National Accelerator Laboratory

TID AIR

∗ Returns : s t a t u s (0 == OK)
∗ /

i n t
BSA DelSimpleSink (

BsaChannel bsaChannel ,
BsaEdef edefIndex ,
BsaSimpleDataSink sink ,
void ∗ c l o s u r e

) ;

/ ∗
∗ Obtain the timing c a l l b a c k funct ion provided by BSA
∗ /

i n t
BSA TimingCallbackRegister (i n t (∗ r e g i s t r a r) (BsaTimingCallback , void ∗)) ;

/ ∗
∗ Notify BSA t h a t the timing c a l l b a c k s w i l l no longer be c a l l e d
∗ /

i n t
BSA TimingCallbackUnregister () ;

/ ∗
∗ Dump s t a t i s t i c s (s tdout i f a n u l l arg i s passed)
∗

∗ I f ’ bsaChannel ’ i s NULL then s t a t i s t i c s f o r a l l
∗ channels are pr inted .
∗ /

void
BSA DumpChannelStats (BsaChannel bsaChannel , FILE ∗ f) ;

void
BSA DumpPatternBuffer (FILE ∗ f) ;

/ ∗
∗ Configurat ion or BsaCore parameters .
∗

∗ NOTE: These parameters can ONLY be s e t before the
∗ core i s i n s t a n t i a t e d (= used) .
∗ /

/ ∗
∗ Set the depth of the pat te rn b u f f e r ; the
∗ value given i s the log2 (depth) .
∗ /

i n t
BSA ConfigSetLdPatternBufSz (unsigned val) ;

/ ∗
∗ Set the (EPICS) p r i o r i t y of the thread t h a t
∗ processes the pat te rn b u f f e r .
∗ /

i n t
BSA Conf igSetPat ternBufPr ior i ty (unsigned val) ;

Revision DRAFT-0-1
Page 17 of 19

SLAC National Accelerator Laboratory

TID AIR

/ ∗
∗ Set the (EPICS) p r i o r i t y of the thread pool
∗ t h a t processes BSA f i l t e r i n g .
∗ /

i n t
BSA ConfigSet InputBufPr ior i ty (unsigned val) ;

/ ∗
∗ Set the number of threads in the pool t h a t
∗ processes BSA f i l t e r i n g .
∗ /

i n t
BSA ConfigSetInputBufPoolSize (unsigned val) ;

/ ∗
∗ Set the (EPICS) p r i o r i t y of the thread pool
∗ t h a t processes BSA r e s u l t s .
∗ /

i n t
BSA ConfigSetOutputBufPriority (unsigned val) ;

/ ∗
∗ Set the number of threads in the pool t h a t
∗ processes BSA r e s u l t s .
∗ /

i n t
BSA ConfigSetOutputBufPoolSize (unsigned val) ;

/ ∗
∗ Set the (EPICS) p r i o r i t y of the a l l threads ;
∗ convenience wrapper which c a l l s a l l of the
∗ above r o u t i n e s .
∗ /

i n t
B SA C on f i gS e tA l lP r i or i t e s (unsigned val) ;

/ ∗
∗ Set the timeout a t which aggregated
∗ r e s u l t s are f lushed .
∗ /

i n t
BSA ConfigSetUpdateTimeoutSecs (double seconds) ;

i f d e f c p l u s p l u s
}

endi f

endi f

Integration with the EPICS eventmodule
Porting the legacy BSA (which historically has been part of the eventmodule) to BsaCore
was possible with minimal changes:

Revision DRAFT-0-1
Page 18 of 19

SLAC National Accelerator Laboratory

TID AIR

• bsaRecordwas modified to support the BSA-related fields (VAL, RMS, PID, ...) being
arrays of length NELM. A NORD field was added which communicates the actual
number of elements contained in the arrays (NELM specifies the maximum of supported
elements).

These modifications are fully backwards compatible and the legacy BSA implementa-
tion may still be used (NELM is set to 1 in this case).

• A new device-support module for bsaRecord was created which implements a
BsaCore sink using the bsaRecord’s NELM field to define the maxResults parameter.
Thus, the problematic update rate of the chained compress records can be reduced
simply by increasing NELM which causes the compress records to be updated less
frequently but with multiple new values at once. EPICS automatically takes care of
this without any further “special” code. A value of NELM ≈ 10 has proven to reduce
CPU load significantly.

Note that while reducing NELM also reduces the delay from data being stored into
BsaCore to results being published this delay cannot be completely eliminated (even
with NELM = 1) due to additional latency caused by internal buffering (see also above).

• A new device-support module for the aoRecord which forwards data into legacy
BSA. While BsaCore-aware IOC applications are recommended to use the BSA API
for storing data into BsaCore (BSA StoreData()) this device-support module enables
transparent porting of (BsaCore-unaware) applications.

Using the aforementioned components is possible to switch existing applications from
legacy BSA to BsaCore simply by making small changes to the BSA-related database
templates and linking the BsaCore library.

Revision DRAFT-0-1
Page 19 of 19

	1 Introduction
	2 Requirements
	3 API
	3.1 Timing API
	3.2 Channels
	3.3 Data Source API
	3.4 Data Sink API

	4 Implementation Notes
	4.1 Backwards Compatibility and Latency Remarks
	4.2 BsaCore Configuration and Initialization
	4.2.1 Sink Timeout

