
PPCBug
Firmware Package

User’s Manual

PPCBUGA/UM6

February 2006 Edition

© Copyright 2001, 2006 Motorola, Inc.

All rights reserved.

Printed in the United States of America.

Motorola® and the Motorola symbol are registered trademarks of Motorola, Inc.

PowerPC™ is a trademark of IBM, and is used by Motorola with permission.

AIXTM is a trademark of IBM Corp.

All other products mentioned in this document are trademarks or registered trademarks of
their respective holders.

Safety Summary

The following general safety precautions must be observed during all phases of operation, service, and repair of this
equipment. Failure to comply with these precautions or with specific warnings elsewhere in this manual could result
in personal injury or damage to the equipment.

The safety precautions listed below represent warnings of certain dangers of which Motorola is aware. You, as the
user of the product, should follow these warnings and all other safety precautions necessary for the safe operation of
the equipment in your operating environment.

Ground the Instrument.
To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical ground. If the
equipment is supplied with a three-conductor AC power cable, the power cable must be plugged into an approved
three-contact electrical outlet, with the grounding wire (green/yellow) reliably connected to an electrical ground
(safety ground) at the power outlet. The power jack and mating plug of the power cable meet International
Electrotechnical Commission (IEC) safety standards and local electrical regulatory codes.

Do Not Operate in an Explosive Atmosphere.
Do not operate the equipment in any explosive atmosphere such as in the presence of flammable gases or fumes.
Operation of any electrical equipment in such an environment could result in an explosion and cause injury or damage.

Keep Away From Live Circuits Inside the Equipment.
Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or other
qualified service personnel may remove equipment covers for internal subassembly or component replacement or any
internal adjustment. Service personnel should not replace components with power cable connected. Under certain
conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, such personnel
should always disconnect power and discharge circuits before touching components.

Use Caution When Exposing or Handling a CRT.
Breakage of a Cathode-Ray Tube (CRT) causes a high-velocity scattering of glass fragments (implosion). To prevent
CRT implosion, do not handle the CRT and avoid rough handling or jarring of the equipment. Handling of a CRT
should be done only by qualified service personnel using approved safety mask and gloves.

Do Not Substitute Parts or Modify Equipment.
Do not install substitute parts or perform any unauthorized modification of the equipment. Contact your local
Motorola representative for service and repair to ensure that all safety features are maintained.

Observe Warnings in Manual.
Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions
contained in the warnings must be followed. You should also employ all other safety precautions which you deem
necessary for the operation of the equipment in your operating environment.

Warning

To prevent serious injury or death from dangerous voltages, use extreme
caution when handling, testing, and adjusting this equipment and its
components.

Notice

While reasonable efforts have been made to assure the accuracy of this document,
Motorola, Inc. assumes no liability resulting from any omissions in this document, or from
the use of the information obtained therein. Motorola reserves the right to revise this
document and to make changes from time to time in the content hereof without obligation
of Motorola to notify any person of such revision or changes.

Electronic versions of this material may be read online, downloaded for personal use, or
referenced in another document as a URL to the Motorola Computer Group website. The
text itself may not be published commercially in print or electronic form, edited, translated,
or otherwise altered without the permission of Motorola, Inc.

It is possible that this publication may contain reference to or information about Motorola
products (machines and programs), programming, or services that are not available in your
country. Such references or information must not be construed to mean that Motorola
intends to announce such Motorola products, programming, or services in your country.

Limited and Restricted Rights Legend

If the documentation contained herein is supplied, directly or indirectly, to the U.S.
Government, the following notice shall apply unless otherwise agreed to in writing by
Motorola, Inc.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (b)(3) of the Rights in Technical Data clause at DFARS 252.227-7013 (Nov.
1995) and of the Rights in Noncommercial Computer Software and Documentation clause
at DFARS 252.227-7014 (Jun. 1995).

Motorola, Inc.
Embedded Communications Computing
2900 South Diablo Way
Tempe, Arizona 85282

v

Contents

About This Manual

Summary of Changes .. xx
Overview of Contents ... xx
Comments and Suggestions ..xxii
Conventions Used in This Manual..xxii

CHAPTER 1 General Information

PPCBug Overview ...1-1
Comparison with other Motorola Bugs..1-2
PPCBug Implementation ...1-2
Memory Requirements...1-3

Size and Address Requirements for NVRAM..1-3
Set-up ...1-3
Start-up...1-4

MPU, Hardware, and Firmware Initialization ..1-5
LED/Serial Startup Diagnostic Codes ...1-7

Running the Diagnostics and Debugger ..1-12
Auto Boot...1-13
ROMboot ...1-14

Sample ROMboot Routine..1-16
Network Auto Boot..1-18
Restarting the System ..1-19

Reset..1-19
Abort ...1-19
Reset/Abort ...1-20
Break...1-20
Board Failure ..1-21

SYSFAIL* Assertion and Negation (VMEbus Boards)............................1-21
MPU Clock Speed Calculation ...1-22

Disk I/O Support ..1-22
Blocks and Sectors..1-23
Device Probe...1-23
Disk I/O via Debugger Commands...1-24

IOI (Input/Output Inquiry)...1-24

vi

IOP (Physical I/O to Disk) .. 1-24
IOT (I/O Configure) .. 1-24
IOC (I/O Control).. 1-24
PBOOT (Bootstrap Operating System)... 1-25

Disk I/O via Debugger System Calls ... 1-26
Default PPCBug Controller and Device Parameters .. 1-27
Disk I/O Error Codes.. 1-27

Network I/O Support ... 1-28
Physical Layer Manager Ethernet Driver ... 1-28
UDP and IP Modules.. 1-28
RARP and ARP Modules ... 1-30
BOOTP Module ... 1-30
TFTP Module.. 1-30
Network Boot Control Module... 1-30
Network I/O Error Codes ... 1-31

Multiprocessor Support (Remote Start)... 1-31
Multiprocessor Control Register (MPCR) Method .. 1-32
GCSR Method .. 1-35

Data and Address Sizes ... 1-37
Byte Ordering .. 1-37

CHAPTER 2 Using the Debugger

Entering Commands .. 2-1
Command Syntax ... 2-1
Command Arguments... 2-2

EXP ... 2-2
ADDR ... 2-4
PORT... 2-6

Command Options.. 2-6
Control Characters.. 2-6

Entering and Debugging Programs.. 2-7
System Call Routines in User Programs.. 2-8
Preserving the Operating Environment ... 2-8

Memory Requirements ... 2-9
Exception Vectors... 2-9
MPU Registers ... 2-10

MPU Register SPR275.. 2-10
MPU Registers SPR272-SPR274.. 2-10

Context Switching ... 2-10
Floating Point Support... 2-12

vii

Single Precision Real ..2-13
Double Precision Real ..2-13
Scientific Notation ..2-14

CHAPTER 3 Debugger Commands

Introduction..3-1
Debugger Commands...3-1

AS - One-Line Assembler...3-5
BC - Block of Memory Compare ...3-6
BF - Block of Memory Fill ...3-8
BI - Block of Memory Initialize ...3-11
BM - Block of Memory Move..3-13
BR - Breakpoint Insert
NOBR - Breakpoint Delete...3-16
BS - Block of Memory Search..3-18
BV - Block of Memory Verify ..3-23
CACHE - Cache Control ..3-26
CM - Concurrent Mode
NOCM - No Concurrent Mode...3-27
CNFG - Configure Board Information Block...3-31
CS - Checksum ...3-35
CSAR - PCI Configuration Space READ Access ..3-37
CSAW - PCI Configuration Space WRITE Access..3-38
DC - Data Conversion...3-39
DMA - Block of Memory Move...3-42
DS - One-Line Disassembler ..3-49
DU - Dump S-Records..3-50
ECHO - Echo String ...3-52
ENV - Set Environment..3-54
FORK - Fork Idle MPU at Address ..3-59
FORKWR - Fork Idle MPU with Registers..3-60
GD - Go Direct (Ignore Breakpoints) ...3-61
GEVBOOT - Global Environment Variable Boot ..3-63
GEVDEL - Global Environment Variable Delete...3-69
GEVDUMP - Global Environment Variable(s) Dump3-70
GEVEDIT - Global Environment Variable Edit ...3-72
GEVINIT - Global Environment Variable Initialization3-73
GEVSHOW - Global Environment Variable(s) Display3-74
GN - Go to Next Instruction ...3-75
G, GO - Go Execute User Program ..3-77

viii

GT - Go to Temporary Breakpoint ... 3-80
HE - Help.. 3-83
IBM - Indirect Block Move.. 3-86
IDLE - Idle Master MPU.. 3-88
IOC - I/O Control for Disk ... 3-89
IOI - I/O Inquiry ... 3-92
IOP - I/O Physical (Direct Disk Access).. 3-95
IOT - I/O Configure Disk Controller ... 3-101
IRD, IRM, IRS - Idle MPU Register Display/Modify/Set 3-109
LO - Load S-Records from Host .. 3-110
MA - Macro Define/Display
NOMA - Macro Delete... 3-115
MAE - Macro Edit.. 3-118
MAL - Enable Macro Listing
NOMAL - Disable Macro Listing .. 3-120
MAR - Load Macros .. 3-121
MAW - Save Macros .. 3-123
MD, MDS - Memory Display .. 3-125
MENU - System Menu... 3-129
M, MM - Memory Modify ... 3-130
MMD - Memory Map Diagnostic .. 3-134
MMGR - Memory Manager ... 3-136
MS - Memory Set ... 3-140
MW - Memory Write.. 3-141
NAB - Network Auto Boot .. 3-143
NAP - NAP MPU ... 3-144
NBH - Network Boot Operating System, Halt... 3-145
NBO - Network Boot Operating System.. 3-147
NIOC - Network I/O Control ... 3-151
NIOP - Network I/O Physical .. 3-157
NIOT - Network I/O Teach (Configuration) .. 3-161
NPING - Network Ping .. 3-168
OF - Offset Registers Display/Modify ... 3-170
PA - Printer Attach
NOPA - Printer Detach ... 3-173
PBOOT - Bootstrap Operating System .. 3-175
PF - Port Format
NOPF - Port Detach ... 3-183
PFLASH - Program FLASH Memory.. 3-188
PS - Put RTC into Power Save Mode... 3-192
RB - ROMboot Enable
NORB - ROMboot Disable .. 3-193

ix

RD - Register Display...3-195
REMOTE - Remote ..3-201
RESET - Cold/Warm Reset ..3-202
RL - Read Loop ..3-204
RM - Register Modify...3-205
RS - Register Set...3-208
RUN - MPU Execution/Status ..3-210
SD - Switch Directories ..3-212
SET - Set Time and Date ..3-213
SROM - SROM Examine/Modify ..3-214
SYM - Symbol Table Attach
NOSYM - Symbol Table Detach ..3-218
SYMS - Symbol Table Display/Search ..3-221
T - Trace..3-223
TA - Terminal Attach ..3-227
TIME - Display Time and Date ..3-228
TM - Transparent Mode..3-229
TT - Trace to Temporary Breakpoint ..3-231
VE - Verify S-Records Against Memory..3-234
VER - Revision/Version Display ..3-238
WL - Write Loop ..3-242

CHAPTER 4 One-Line Assembler/ Disassembler

Introduction..4-1
PowerPC Assembly Language...4-1

Machine-Instruction Operation Codes..4-2
Directives ..4-2

Comparison with the Standard Assembler...4-2
Source Program Coding ...4-3

Source Line Format ..4-3
Operation Field ..4-3
Operand Field ..4-4
Disassembled Source Line...4-4
Mnemonics and Delimiters..4-4
Instructions ..4-6
Character Set..4-7

Addressing Modes ..4-8
WORD Define Constant Directive ...4-9
SYSCALL System Call Directive ..4-10

Entering and Modifying Source Programs ..4-11

x

Invoking the Assembler/Disassembler ... 4-11
Entering a Source Line ... 4-12
Entering Branch Operands ... 4-13
Assembler Output/Program Listings .. 4-13
Assembler Error Messages ... 4-14

CHAPTER 5 System Calls

Introduction ... 5-1
Invoking System Calls.. 5-1
String Formats for I/O .. 5-2

System Call Routines... 5-2
.INCHR .. 5-7
.INSTAT .. 5-8
.INLN ... 5-9
.READSTR ... 5-10
.READLN ... 5-12
.CHKBRK ... 5-13
.DSKRD
.DSKWR .. 5-14
.DSKCFIG ... 5-17

Configuration Area Block CFGA Fields... 5-22
.DSKFMT ... 5-27
.DSKCTRL .. 5-30
.NETRD
.NETWR .. 5-32
.NETCFIG .. 5-34
.NETFOPN .. 5-40
.NETFRD .. 5-42
.NETCTRL... 5-44
.OUTCHR ... 5-47
.OUTSTR
.OUTLN .. 5-48
.WRITE
.WRITELN .. 5-49
.PCRLF ... 5-50
.ERASLN .. 5-51
.WRITD
.WRITDLN .. 5-52
.SNDBRK ... 5-54
.DELAY .. 5-55
.RTC_TM .. 5-56

xi

.RTC_DT ...5-57

.RTC_DSP ...5-58

.RTC_RD ...5-59

.REDIR ..5-60

.REDIR_I
.REDIR_O ..5-61
.RETURN ..5-62
.BINDEC ..5-63
.CHANGEV ...5-64
.STRCMP ..5-65
.MULU32 ..5-66
.DIVU32 ..5-67
.CHK_SUM ...5-68
.BRD_ID ..5-69
.ENVIRON ..5-72
.PFLASH Function ..5-76

.DIAGFCN ...5-79
.SIOPEPS ..5-91
.FORKMPU Function...5-93
.FORKMPUR Function..5-94
.IDLEMPU Function ...5-99
.IOINQ ...5-100
.IOINFORM ..5-105
.IOCONFIG ...5-107
.IODELETE ...5-108
.SYMBOLTA ...5-110
.SYMBOLTD ..5-112

APPENDIX A Related Documentation

Motorola Computer Group Documents ..A-1
Microprocessor and Controller Documents ..A-3
Related Specifications...A-9

APPENDIX B System Menu

Introduction...B-1
Menu Items ...B-1

Continue System Start-up ..B-1
Select Alternate Boot Device...B-1
Go to System Diagnostics..B-2

xii

Initiate Service Call ... B-2
Display System Test Errors ... B-2
Dump Memory to Tape ... B-2

Using the Service Call Function... B-5
Operation ... B-5

Sending Messages .. B-7
Concurrent Mode ... B-7
Terminating the Conversation and Concurrent Modes B-8

Manual Connection ... B-9
Terminal Connection ... B-10

APPENDIX C PPCBug Messages

Introduction .. C-1
Error Messages ... C-2
Other Messages... C-3

APPENDIX D S-Record Format

Introduction .. D-1
S-Record Content ... D-1
S-Record Types... D-2
Creating S-Records... D-3
Example .. D-4

APPENDIX E Disk and Tape Controllers

Disk and Tape Support ..E-1
Floppy Drive Configuration Parameters..E-2

APPENDIX F Disk Status Codes

Introduction ...F-1
SCSI..F-1
ATA (Hard Disks/CD-ROM Drives) ..F-2
ATAPI (CD-ROM Drives)..F-2

Controller-Independent Status Codes ..F-3
SCSI Firmware Status Codes ..F-3
ATA/ATAPI Firmware Status Codes ...F-6

xiii

APPENDIX G Establishing Network Connections with PPCBug

APPENDIX H Network Communication Status Codes

xv

List of Figures

Figure 1-1. Network Boot Modules ...1-29
Figure 3-1. Boot Record ..3-177
Figure 3-2. PowerPC Reference Platform Partition Table Entry3-178
Figure 3-3. Layout of the $41-Type Partition ..3-179

xvii

List of Tables

Table 1-1. LED/Serial Startup Diagnostic Codes ..1-8
Table 1-2. MPCR Method Remote Start Register Model ..1-33
Table 1-3. GCSR Method Remote Start Register Model...1-35
Table 1-4. LM/SIG Register Bit Assignments ...1-36
Table 3-1. Debugger Commands ...3-1
Table 5-1. System Call Routines -- Hex Code Order...5-2
Table 5-2. System Call Routines -- Alphabetical Order ..5-4
Table 5-3. Disk Packet Parameters ..5-20
Table 5-4. IOSATM Fields (CFGA) ..5-22
Table 5-5. IOSPRM Fields (CFGA) ..5-23
Table 5-6. IOSEPRM Fields (CFGA) ..5-23
Table 5-7. IOSATW Fields (CFGA) ..5-24
Table 5-8. CFGA Fields ...5-25
Table A-1. Motorola Computer Group Documents ...A-1
Table A-2. Microprocessor and Controller Documents ...A-3
Table A-3. Related Specifications ...A-9
Table C-1. Debugger Error Messages ..C-2
Table C-2. Other Messages ..C-3
Table D-1. S-Record Fields ...D-1
Table E-1. Disk and Tape Controllers Supported .. E-1
Table E-2. Floppy Drive Configuration Parameters .. E-2
Table F-1. Controller-Independent Status Codes ... F-3
Table F-2. SCSI Firmware Status Codes ... F-4
Table F-3. ATA/ATAPI Controller-Dependent Errors .. F-7
Table H-1. Controller-Independent Status Codes ..H-1
Table H-2. DEC21040/21140/21143 Controller Status CodesH-2
Table H-3. Intel 82559/ER Controller Status Codes..H-3

xix

About This Manual
The PPCBug Firmware Package User’s Manual provides information on
the PPCBug firmware, the start-up and boot routines, the debugger
commands, the one-line assembler/disassembler, and the debugger system
calls.

Information in this manual applies to Motorola PowerPC™-based boards
that use PPCBug as its resident debugger program. The majority of
Motorola’s PowerPC™-based boards including most VME, CompactPCI
and ATX form factors are equipped with PPCBug.

The diagnostics are covered in the PPCBug Diagnostics Manual
(PPCDIAA/UM).

xx

Summary of Changes
This is the sixth edition of the PPCbug Firmware Package User’s Manual.
It supersedes the fourth edition (UM5) and incorporates the following
updates.

Overview of Contents
Chapter 1, General Information, provides an overview of PPCBug,
memory requirements, an explanation of the start-up process, a "high-
level" list of what PPCBug checks, a list of the LED/Serial startup
diagnostic codes, a brief explanation on how to run the Debugger and
Diagnostics firmware interactively, an explanation of the auto boot

Where Updated Description of Change

Overall Change Most instances of PPC1Bug or PPC1 were changed to
PPCxBug or PPCx to accommodate multiple versions of
Bug, which have been released.

Chapter 1 Since PPCBug resides on most PowerPC boards, specific
boards are no longer listed at the beginning of this chapter.

A correction was made to the starting address (from
$03F80000 to $03F40000) of the example described in the
section titled Memory Requirements on page 1-3.

A second example for the size and address requirements of
NVRAM was added in the sections titled Size and Address
Requirements for NVRAM on page 1-3.

New LED/Serial Startup Diagnostic codes were added to
Table 1-1 on page 1-8.

The section titled Multiprocessor Support (Remote Start) on
page 1-31 was completely revised.

Chapter 3 Several new commands were added (e.g., CACHE, IBM and
MMGR), and several existing command descriptions were
updated (e.g., ENV, NIOT, SROM, and TA).

Appendix G The content was completely revised from the previous
version of this manual.

Appendix H Status codes were added for the 21143 and 82559ER
controllers.

xxi

process, an explanation of the ROMboot process, an explanation of the
network auto boot process, an explanation on restarting the system, a
description of the types of board failures, an explanation of the MPU clock
speed calculation, a description of the disk I/O support, a description of the
network I/O support, and an explanation of the multiprocessor support
(remote start).

Chapter 2, Using the Debugger, contains a series of explanations on the
various aspects of Debugger use including such subjects as command
syntax, command arguments, command options, control characters,
entering and debugging programs, system call routines in user programs,
preserving the operating environment, context switching, and floating
point support.

Chapter 3, Debugger Commands, a list of all current commands, and a
detailed explanation of each command including command input and
description.

Chapter 4, One-Line Assembler/ Disassembler, describes a PPCBug tool
that allows you to create, modify and debug code written in PowerPC
assembly language.

Chapter 5, System Calls, describes the PPCBug System Call handler,
which allows system calls from user programs.

Appendix A, Related Documentation, lists related Motorola
documentation, as well as other vendor documents and specifications.

Appendix B, System Menu, describes each menu item within the PPCx-
Bug> or PPCx-Diag> environment.

Appendix C, PPCBug Messages, contains a series of tables listing all
PPCBug messages and their meaning.

Appendix D, S-Record Format, describes the purpose and use of the S-
Record format.

Appendix E, Disk and Tape Controllers, lists and describes the types of
disk and tape controllers supported by PPCBug.

Appendix F, Disk Status Codes, lists and describes the various disk status
codes supported by PPCBug.

xxii

Appendix G, Establishing Network Connections with PPCBug, describes
a procedure that can be used to establish a network connection using
standard PPCBug commands from a PowerPC board with a compatible
network connectivity device.

Appendix H, Network Communication Status Codes, lists and describes
two main types of network communication status codes: controller
independent and controller dependent.

Comments and Suggestions
Motorola welcomes and appreciates your comments on its documentation.
We want to know what you think about our manuals and how we can make
them better. Mail comments to:

Motorola Computer Group
Reader Comments DW278
2900 S. Diablo Way
Tempe, Arizona 85282

You can also submit comments to the following e-mail address:
reader-comments@mcg.mot.com

In all your correspondence, please list your name, position, and company.
Be sure to include the title and part number of the manual and tell how you
used it. Then tell us your feelings about its strengths and weaknesses and
any recommendations for improvements.

mailto:reader-comments@mcg.mot.com

xxiii

Conventions Used in This Manual
The following typographical conventions are used in this document:

bold

is used for user input that you type just as it appears. Bold is also used
for commands, options and arguments to commands, and names of
programs, directories and files.

italic

is used for names of variables to which you assign values. Italic is also
used for comments in screen displays and examples, and to introduce
new terms.

courier

is used for system output (for example, screen displays, reports),
examples, and system prompts.

<Enter>, <Return> or <CR>

<CR> represents the carriage return or Enter key.

CTRL

represents the Control key. Execute control characters by pressing the
Ctrl key and the letter simultaneously, for example, Ctrl-d.

|

separates two or more items from which to choose (one only)

[]

encloses an optional item that may not occur at all, or may occur once.

{ }

encloses an optional item that may not occur at all, or may occur one
or more times.

xxiv

A character precedes a data or address parameter to specify the numberic
format, as follows (if not specified, the format is hexadecimal):

Data and address sizes are defined as follows:

A byte is eight bits, numbered 0 through 7, with bit 0 being the least
significant.

A half-word is 16 bits, numbered 0 through 15, with bit 0 being the least
significant.

A word is 32 bits, numbered 0 through 31, with bit 0 being the least
significant.

The MPU on the PowerPC board is programmed to big-endian byte
ordering. Any attempt to use little-endian byte ordering will immediately
render the debugger unusable

$ dollar
a hexadecimal character.

0x Zero-x

% percent a binary number.

& ampersand a decimal number.

1-1

11General Information

PPCBug Overview
PPCBug is a powerful evaluation and debugging tool for systems built
around the Motorola PowerPC microprocessors. PPCBug firmware
consists of three parts:

❏ Command-driven user-interactive software debugger. It is hereafter
referred to as the debugger, which is described in this manual.
Debugging commands are available for loading and executing user
programs under complete operator control for system evaluation.

❏ Command-driven diagnostic package for testing and
troubleshooting the PowerPC board, which is hereafter called the
diagnostics. Refer to the PPCBug Diagnostics Manual for
information on the diagnostics and the diagnostics utilities and self-
tests.

❏ MPU, firmware, and hardware initialization routines, which are
described in this manual.

The PPCBug firmware is implemented on most Motorola PowerPC-based
products:

A PMCspan board added to any main board also interfaces with PPCBug.

They are collectively referred to in this manual as the PowerPC board or
board.

The debugger includes:

❏ Commands for display and modification of memory

❏ Breakpoint and tracing capabilities

❏ Assembler and disassembler useful for patching programs

Various PPCBug routines that handle I/O, data conversion, and string
functions are available to user programs through the System Call handler.

1-2 Embedded Communications Computing Web Site

General Information
1

Because PPCBug is command-driven, it performs its various operations in
response to user commands entered at the keyboard.

Comparison with other Motorola Bugs
The PPCBug is similar to previous Motorola firmware packages (e.g.,
MVME147Bug, MVME167Bug, MVME187Bug), with differences due to
microprocessor architectures. These differences are primarily reflected in
the instruction mnemonics, register displays, addressing modes of the
assembler/disassembler, and argument passing to the system calls.

PPCBug Implementation
PPCBug is written largely in the C programming language, providing
benefits of portability and maintainability. Where necessary, the assembly
language has been used in separately compiled program modules that deal
with processor-specific issues. No mixed-language modules are used.

Physically, PPCBug is contained in two socketed 32-pin PLCC Flash
devices that together provide 1MB (256KB words) of storage. PPCBug
uses the entire memory contained in the two devices.

The executable code is checksummed at every power-on or reset firmware
entry. The result is checked with a pre-calculated checksum contained in
the last 16-bit word of the Flash image.

!
Caution

Although a command to allow the erasing and reprogramming
of this Flash memory is available to you, keep in mind that
reprogramming any portion of Flash memory will erase
everything currently contained in Flash, including PPCBug.

Memory Requirements

http://www.motorola.com/computer/literature 1-3

1

Memory Requirements
The debugger requires approximately 768KB of read/write memory (i.e.,
DRAM). The debugger allocates this memory from the top, down. For
example, on a system which contains 64MB ($04000000) of read/write
memory, the debugger’s memory page will be located at $03F40000 to
$03FFFFFF.

Size and Address Requirements for NVRAM

Currently, Motorola uses the SGS-Thompson Timekeeper SRAM device
(48T559, or M48T35), or equivalent. This is used on the PowerPlus boards
and is structured by the Debugger as follows:

Example 1: NVRAM = 8192 bytes total size (with rtc):

Example 2: NVRAM = 32768 bytes total size

Set-up
Refer to the board installation and use manual for information on installing
the hardware, configuring jumpers, and assigning the console monitor.

Size/Area Offset

5880 bytes user area 0000 - 16f7

2048 bytes debugger area 16f8 - 1ef7

256 bytes configuration area 1ef8 - 1ff7

8 bytes real time clock registers 1ff8 - 1fff

Size/Area Offset

30456 bytes user area 0000 - 76f7

2048 bytes debugger area 76f8 - 7ef7

256 bytes configuration area 7ef8 - 7ff7

8 bytes real time clock registers 7ff8 - 7fff

1-4 Embedded Communications Computing Web Site

General Information
1

Start-up
At either power-up or system reset, PPCBug performs the MPU, hardware,
and firmware initialization process (refer to MPU, Hardware, and
Firmware Initialization on page 1-5). This process includes a checksum of
the FLASH memory contents.

The following types of messages are displayed on the firmware console
during the initialization process:

Copyright Motorola Inc. 1988 - 1997, All Rights Reserved

PPCx Debugger/Diagnostics Release Version 4.x - xx/xx/xx/RMxx
COLDStart

Local Memory Found =04000000 (&67108864)

MPU Clock Speed =167Mhz

BUS Clock Speed =67Mhz

Reset Vector Location : ROM Bank B
Mezzanine Configuration: Single-MPU
Current 60X-Bus Master : MPU0
Idle MPU(s) : NONE

System Memory: 64MB, ECC Enabled (ECC-Memory Detected)

L2 Cache: NONE

PPCx-Bug>

At this point, PPCBug is waiting for you to enter one of the commands
described in Chapter 3, of this manual.

PPCBug may alternatively be configured via the ENV command to run
selftest and/or autoboot automatically during startup. If so, then PPCBug
will instead behave as follows:

The system pauses five seconds, during which you may terminate start-up,
and exit to the diagnostics prompt, by pressing ESC or the Break key.

The system performs the self test diagnostics if you do not terminate
system start-up. Upon successful completion of these tests, the system
pauses another five seconds. You may terminate start-up, and exit to the
diagnostics prompt, by pressing ESC or the Break key.

Start-up

http://www.motorola.com/computer/literature 1-5

1

If you do not terminate system start-up, the system begins the boot routine
that has been set up in the ENV command, either NVRAM Boot List Boot,
Auto Boot, ROMboot, or Network Auto Boot.

If the self-tests fail, various error messages appear, and the diagnostics
prompt appears.

Refer to Chapter 3, for information on setting the ENV command
parameters.

MPU, Hardware, and Firmware Initialization

The MPU, hardware, and firmware initialization process is performed by
the PPCBug power-up or system reset. The steps below are a high-level
outline; not all of the detailed steps are listed.

1. Set MPU.MSR to known value.

2. Invalidate the MPU’s data/instruction caches.

3. Clear all segment registers of the MPU.

4. Clear all block address translation registers of the MPU.

5. For “dual CPU only” boards (MVME460x or MTX), catch one CPU
of a dual CPU and place it in a waiting loop.

6. Initialize the MPU bus to PCI bus bridge device.

7. Initialize the PCI bus to ISA bus bridge device.

8. Calculate the external bus clock speed of the MPU.

9. Delay for 750 milliseconds.

10. Determine the CPU board type.

11. Size the local read/write memory (i.e., DRAM).

12. Initialize the read/write memory controller.

13. Set base address of memory to $00000000.

14. Retrieve the speed of read/write memory.

1-6 Embedded Communications Computing Web Site

General Information
1

15. Initialize read/write memory controller with the speed of read/write
memory.

16. Retrieve the speed of read only memory (Flash).

17. Initialize read only memory controller with the speed of read only
memory.

18. Enable the MPU’s instruction cache.

19. Copy the MPU’s exception vector table from $FFF00000 to
$00000000.

20. Initialize the SIO (PC87303/PC87307/PC87308) resources’ base
addresses for boards that have the SIO device.

21. Initialize the Z8536 device if the board has the device.

22. Verify MPU type.

23. Enable the super-scalar feature of the MPU (boards with MPC604-
type chips only).

24. Initialize the Keyboard Controller (PC87303/PC87307/PC87308)
for boards that have the device.

25. Determine the debugger’s Console/Host ports, and initialize the
appropriate UART or Graphic devices.

26. Display the debugger’s copyright message.

27. Display any hardware initialization errors that may have occurred.

28. Checksum the debugger object, and display a warning message if
the checksum failed to verify.

29. Display the amount of local read/write memory found.

30. Verify the configuration data that is resident in NVRAM, and
display a warning message if the verification failed.

31. Calculate and display the MPU clock speed. Verify that the MPU
clock speed matches the configuration data, and display a warning
message if the verification fails.

Start-up

http://www.motorola.com/computer/literature 1-7

1

32. Display the BUS clock speed. Verify that the BUS clock speed
matches the configuration data, and display a warning message if
the verification fails.

33. For boards that have a Keyboard Controller display initialization
errors that have occurred.

34. Probe PCI bus for supported Network devices.

35. Probe PCI bus for supported Mass Storage devices.

36. Initialize the memory/IO addresses for the supported PCI bus
devices.

37. Execute self-test, if configured.

38. Extinguish the board fail LED, if there are no self-test failures or
initialization/configuration errors.

39. Execute the configured boot routine, either ROMboot, Autoboot, or
Network Autoboot. (PowerPlus architecture boards do not execute
a configured boot routine.)

40. Execute the user interface (i.e., the PPCx-Bug> or PPCx-Diag>
prompt).

LED/Serial Startup Diagnostic Codes

These codes are displayed on seven-segment LEDs at key points in the
initialization of the hardware devices. Should the debugger fail to come up
to a prompt, the last code displayed will indicate how far the initialization
sequence had progressed before stalling. The serial port version of the
startup codes is enabled by an ENV parameter:

Serial Startup Code Master Enable [Y/N]=N?

Under normal conditions, the startup sequence begins at 0x1100 and
continues to the PPC1-Bug> prompt just after 0x11D4. RAM
initialization problems may cause the startup sequence to terminate at the:
(RawBug) prompt just after 0x11D8 instead.

1-8 Embedded Communications Computing Web Site

General Information
1

The operating system boot sequence begins at 0x11E0 with the creation of
residual data and continues to 0x11EC just before execution is passed to
the boot image. The OS may have its own LED codes which are displayed
after 0x11EC.

A line feed can be inserted after each serial code is displayed to prevent it
from being overwritten by the next code. This is also enabled by an ENV
parameter:

Serial Startup Code LF Enable [Y/N]=N?

The following firmware codes are always sent to 7-segment LEDs located
at ISA I/O address 0x8C0. These codes can also be sent to the debugger
serial port if the ENV parameter “Serial Startup Code Master Enable” is
set to ‘Y’. The list of LED/serial codes follows.

Table 1-1. LED/Serial Startup Diagnostic Codes

Code (Hex) Location in Startup

1100 Setting up MSR (startup begins)

1102 Invalidating caches

1104 Determining ROM or RAM execution mode

1106 Setting up machine state register

1108 Setting up CPU’s address translation registers

110A Setting up CPU’s address translation table

110C Shutting down redundant processors

110D Init I/O path out to serial port

110E Initializing super I/O chip (CPU initialization completed)

110F Enable ISA bus access

1110 Initializing raw I/O device

1111 Initialize early stack memory

1112 Getting PHB (PCI Host Bridge) Table Pointer

1113 Disable all caches

1114 Initializing PCI bridge

1116 Initializing the powerup flag indicator

1118 Calculating the speed of the processor bus

Start-up

http://www.motorola.com/computer/literature 1-9

1

111A Waiting for hardware to initialize memory

111C Setting up the DRAM init parameters

111E Initializing DRAM in bridge/memory controller

1120 Setting up debugger memory page area

1122 Calculating and setting DRAM speed

1124 Calculating and setting ROM speed

1126 Enabling instruction cache

1128 Setting up debugger memory page tables

112A Setting up debugger kernel pointers and saving registers

112B Setup the exception control description

112C Setting up buginit section pointers and runtime variables

1130 Retrieving the processor board type

1132 Initializing the Z8536

1134 Initializing local board status

1136 Retrieving the base board type

1138 Checking the level of the ABORT push-button

113A Initializing the interrupt/timer controller

113C Retrieving MPU identifier

113E Enabling super-scalar modes

1140 Adding processor-specific work-arounds

1142 Getting the bus clock speed

1144 Initializing the keyboard controller

1145 Probe for PCI functions

1146 Initializing the PCI interrupt route control registers

1148 Starting PCI hierarchy configuration process

12nn Probing PCI config space (nn = bbbddddd; bbb = bus#, ddddd = dev#

1149 Allocating PCI I/O & memory space and initializing PCI devices.

Table 1-1. LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup

1-10 Embedded Communications Computing Web Site

General Information
1

114A Initializing RAVEN PCI space

114C Initializing RAVEN time base registers

114D Initialize RAVEN interrupt controller

114E Initializing FALCON ROM

1150 Initializing VME bridge

1152 Initializing ISA bridge

1154 Sending speaker beep

1160 Checking abort switch state

1162 Initializing exception handling

1164 Initializing board identifier structure

1166 Initializing point break table

1168 Initializing macro subsystem

116A Initializing configuration data area

116C Initializing board information data area

116E Initializing I/O (character) subsystem

1170 Initializing register file

1172 Getting bridge pointer

1174 Setting up local memory pointers

1176 Setting up local memory size variables

1178 Displaying sign-on messages

117A displaying board initialization errors

117C Verifying the ROM checksum

117E Displaying memory size and misc errors

1180 Displaying MPU clock speed

1182 Verifying MPU clock speed

1184 Displaying bus clock speed

1186 Initializing network I/O subsystem

Table 1-1. LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup

Start-up

http://www.motorola.com/computer/literature 1-11

1

1188 Initializing disk I/O subsystem

118A Initializing direction flags

118C Initializing NVRAM (PReP) environment

118E Initializing residual data pointer

1190 Initializing input/output pointers

1192 Initializing diagnostic subsystem

1194 Setting up special init section pointers and runtime variables

1196 Initializing abort switch

1198 Setting up board suffix and return environment

11A0 Retrieving the processor board type

11A2 Displaying memory warning and MPU configuration

11A4 Clearing MPU idle semaphores

11A6 Waiting for MPU logins

11A8 Displaying MPU status information

11AA Setting up DRAM and bridge pointers

11AC Initializing DRAM ECC/parity

11AE Displaying DRAM information

11B0 Setting up misc. L2 cache variables

11B2 Setting up L2 cache size variables

11B4 Initializing and flushing L2 cache data parity

11B6 Displaying L2 cache parity state

11B8 Reading NVRAM contents

11BA Verifying NVRAM header

11BC Initializing NVRAM contents

11BE Retrieving global environment variable pointers

11D0 Initializing processor timebase/decrementer registers

11D2 Enabling interrupts

Table 1-1. LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup

1-12 Embedded Communications Computing Web Site

General Information
1

Running the Diagnostics and Debugger
In order to use the diagnostics, terminate the start-up process by pressing
ESC or the Break key during one of the four pauses (PowerPlus
architecture boards in their default configuration may not pause at any of
the four places.) The diagnostics prompt (PPCx-Diag>) appears. You
may switch to the debugger prompt (PPCx-Bug>) by using the SD
command.

Both the debugger and diagnostic commands are available from the
diagnostic prompt. Only the debugger commands are available from the
debugger prompt.

You may view a list of the diagnostics or debugger commands by using the
HE (Help) command.

Note Some diagnostics depend on restart defaults that are set up only
in a particular restart mode. Refer to the PPCBug Diagnostics
Manual, PPCDIAA/UM, for the correct mode.

11D4 Transferring control to monitor (initialization complete)

11D8 Error - dropping to RawBug

11E0 Initializing residual data structure

11E2 Adding vital product data

11E4 Adding processor information

11E6 Adding memory information

11E8 Adding PCI device information

11EA Adding ISA device information

11EC Residual data completed

12nn Probing PCI config space (board specific)

Table 1-1. LED/Serial Startup Diagnostic Codes (Continued)

Code (Hex) Location in Startup

Auto Boot

http://www.motorola.com/computer/literature 1-13

1

Refer to the PPCBug Diagnostics Manual for complete descriptions of the
diagnostic routines available and instructions on how to invoke them.

Auto Boot

Note The PowerPlus architecture boards do not execute a configured
boot routine.

Auto Boot is the default boot routine. It provides an independent
mechanism for booting an operating system. No console is required.
Autoboot selects the boot device from either a scan list of device types, a
floppy diskette, a CD-ROM, tape, or a hard disk.

You may change the scan order, or configure Auto Boot to boot from a
specific Controller Logical Unit Number (CLUN) and Device Logical
Unit Number (DLUN) by changing the ENV command parameters for
enabling Auto Boot (refer to Chapter 3, for information).

At power-up, Auto Boot is enabled. The following message is displayed
on the system console:

Autoboot in progress... To abort hit <BREAK>

Following this message there is a delay to allow you to abort the Auto Boot
process and gain control. Press either the BREAK key or the software
abort or reset switch to abort Autoboot.

If you do not abort Auto Boot, the actual I/O is begun. The program
pointed to within the boot-record of the media specified is loaded into
RAM, and control is passed to it.

Upon power-up or system reset, PPCBug examines the validity of the
configuration parameters in NVRAM. If there is a configuration error
(e.g., corrupted data or checksum error), the PPCBug will initialize the
configuration parameters using default values, and run AutoBoot.
Following the auto-initialization of the configuration parameters, the
PPCBug will reset the system to allow a start-up with the now default
configuration parameters.

1-14 Embedded Communications Computing Web Site

General Information
1

ROMboot

Note The PowerPlus architecture boards do not execute a configured
boot routine.

ROMboot is a mechanism for booting an operating system from a user-
defined routine stored in ROM. ROMboot executes at power-up (or
optionally at reset) if it is configured and enabled in parameters set with
the ENV command. It may also be executed with the RB (ROMboot)
command.

Refer to Chapter 3, for information on setting the ENV command
parameters for enabling ROMboot.

For ROMboot to work, a ROMboot routine must be stored in the FLASH
memory to support it. If ROMboot code is installed, a user-written routine
is given control (if the routine meets the format requirements). One use of
ROMboot might be resetting SYSFAIL* on an unintelligent controller
board.

The NORB command disables ROMboot.

For a user’s ROMboot routine to gain control through the ROMboot
linkage, four requirements must be met:

❏ Power must have just been applied (or at reset, if configured to do
so with the ENV command).

❏ Your ROMboot routine must be stored within the PowerPC board
FLASH memory map (or elsewhere in onboard memory, if
configured to do so with the ENV command).

❏ The ASCII string “BOOT” must be located within the specified
memory range.

❏ Your ROMboot routine must pass a checksum test, which ensures
that this routine was really intended to receive control at power-up.

When the module is ready, it can be loaded into RAM. Use the CS
command to generate, install, and verify the checksum.

ROMboot

http://www.motorola.com/computer/literature 1-15

1

The format of the beginning of the routine is:

If you want to make use of ROMboot, you do not have to fill a complete
FLASH device. Any partial amount is acceptable, as long as:

❏ The identifier string “BOOT” starts on a word (FLASH and Direct
spaces) or 8KB (local RAM and VMEbus spaces) boundary.

❏ The ROMboot routine size (in bytes) is evenly divisible by 2.

❏ The length parameter (offset $8) reflects where the checksum is, and
the checksum is correct.

ROMboot searches predefined areas of the memory map for possible
routines and checks for the “BOOT” indicator. Two events are of interest
for any location being tested:

❏ The map is searched for the ASCII string “BOOT”.

❏ If the ASCII string “BOOT” is found, it is still undetermined
whether the routine is meant to gain control at power-up or reset. To
verify that this is the case, the bytes starting from “BOOT” through
the end of the routine, excluding the two byte checksum, are run
through the debugger checksum algorithm. If the result of the
checksum is equal to the final two bytes of the ROMboot routine
(the checksum), it is established that the routine was meant to be
used for ROMboot.

Under control of the ENV command, the sequence of searches is as
follows:

Offset Length Contents Description

$00 4 bytes BOOT ASCII string indicating possible
routine; the checksum must be
valid

$04 4 bytes Entry Address Word offset from “BOOT”

$08 4 bytes Routine Length Word; includes length from
“BOOT” to and including a two-
byte checksum

$0C Length
of name

Routine name ASCII string containing routine
name

1-16 Embedded Communications Computing Web Site

General Information
1

1. Search direct address for “BOOT”. The direct address points to an
installed ROMboot routine. It is a variable that may be set using the
ENV command.

2. Search complete ROM map.

3. Search local RAM, at all 8KB boundaries starting at the beginning
of local RAM.

4. Search the VMEbus map (if so selected by the ENV command) on
all 8KB boundaries starting at the end of the onboard RAM.
VMEbus address space is searched both below (if the start address
of local RAM is not located at 0) and above local RAM up to the
beginning of FLASH Space.

Sample ROMboot Routine

The example ROMboot routine performs the following:

❏ Outputs a <CR> <LF> sequence to the default output port.

❏ Displays the date and time from the current cursor position.

❏ Outputs two more <CR> <LF> sequences to the default output port.

❏ Returns control to PPCBug.

ROMboot

http://www.motorola.com/computer/literature 1-17

1

Do the following to prepare the ROMboot routine (includes checksum
calculation):

1. Assemble and link the code, leaving $00 in the even and odd
locations destined to contain the checksum.

2. Load the routine into RAM (with S-records via the LO command,
or from magnetic media using IOP).

3. Display entire ROMboot routine (checksum bytes are at $00010038
and $00010039).

PPC1-Bug>MD 10000 :10 <Return>
00010000 424F4F54 00000010 0000003A 54455354 BOOT.......:TEST
00010010 39400026 44000002 39400052 44000002 9@.&D...9@.RD...
00010020 39400026 44000002 39400026 44000002 9@.&D...9@.&D...
00010030 39400063 44000002 0000FFFF FFFFFFFF 9@.cD...........

4. Disassemble executable instructions.

PPC1-Bug>MD 10010:5;DI <Return>
00010010 39400026 SYSCALL .PCRLF

00010018 39400052 SYSCALL .RTC_DSP

00010020 39400026 SYSCALL .PCRLF

00010028 39400026 SYSCALL .PCRLF

00010028 39400063 SYSCALL .RETURN

5. Perform checksum on locations $10000 through $10037 (refer to
the CS command information in Chapter 3,).

PPC1-Bug>CS 10000:38/2;H <Return>
Effective address: 00010000

Effective count : &56

Checksum: ACFA

6. Insert checksum into bytes $10038, $10039.

PPC1-Bug>M 10038;H <Return>
00010038 0000? ACFA. <Return>

7. Display the entire ROMboot routine with checksums.

PPC1-Bug>MD 10000 :10 <Return>
00010000 424F4F54 00000010 0000003A 54455354 BOOT.......:TEST

00010010 39400026 44000002 39400026 44000002 9@.&D...9@.RD...

00010020 39400026 44000002 39400026 44000002 9@.&D...9@.&D...

00010030 39400063 44000002 ACFAFFFF FFFFFFFF 9@.cD...........

1-18 Embedded Communications Computing Web Site

General Information
1

8. Verify the functionality of the user ROMboot routine with the RB
command.

PPC1-Bug>RB; V <Return>
ROMboot about to Begin... Press <ESC> to Bypass, <SPC> to Continue
Direct Add: FFC00000 FFFFFFFC: Searching for ROMboot Module at: 00010000
Executing ROMboot Module “TEST” at 00010000

MON MAR 27 10:39:08.00 1995

PPC1-Bug>

The sample ROMboot routine is now ready for use.

Network Auto Boot
Network Auto Boot (or Network Boot) is a software routine that provides
a mechanism for booting an operating system using an Ethernet network
as the boot device.

Network Auto Boot executes at power-up (or optionally at reset) if it is
configured and enabled in parameters set with the ENV command.

This routine selects the boot device based on the Controller Logical Unit
Number (CLUN) and Device Logical Unit Number (DLUN) which have
been set in the ENV command.

Refer to Chapter 3, for information on setting the ENV command
parameters for enabling Network Auto Boot.

If Network Boot is enabled, the following message is displayed on the
system console at power-up:

Network Boot in progress... To abort hit <BREAK>

Following this message there is approximately a five-second delay before
the actual I/O is begun. The program pointed to within the volume ID of
the media specified is loaded into RAM and control is passed to it.

During the delay, you can gain control without Network Autoboot by
pressing either the BREAK key or the software abort or reset switches.

Restarting the System

http://www.motorola.com/computer/literature 1-19

1

Network Autoboot is controlled by parameters contained in the NIOT and
ENV commands. These parameters allow the selection of specific boot
devices, systems, and files and allow programming of the boot delay. Refer
to the NIOT and ENV commands in Chapter 3, for more details.

Restarting the System
You can initialize the system to a known state in three different ways:
reset, abort, and break. Each has characteristics which make it more
appropriate than the others in certain situations.

Reset

Pressing and releasing the board front panel RESET switch initiates a
system reset. Cold and warm reset modes are available. By default,
PPCBug is in cold mode (refer to the RESET command description in
Chapter 3). During cold reset, a total system initialization takes place, as if
the PowerPC board had just been powered up. All static variables are
restored to their default states. The breakpoint table and offset registers are
cleared. The target registers are invalidated. Input and output character
queues are cleared. Onboard devices are reset, and the first two serial ports
are reconfigured to their default state.

During warm reset, the PPCBug variables and tables are preserved, as well
as the target state registers and breakpoints.

Reset must be used if the processor ever halts, or if the PPCBug
environment is ever lost, such as if the vector table is destroyed, or the
stack is corrupted.

Abort

Abort is invoked by pressing and releasing the ABORT switch. Whenever
abort is invoked while executing a user program (running target code), a
snapshot of the processor state is captured and stored in the target registers.
(When working in the debugger, abort captures and stores only the
Instruction Pointer, status register, and format and vector information.) For

1-20 Embedded Communications Computing Web Site

General Information
1

this reason, abort is most appropriate when terminating a user program that
is being debugged. Abort should be used to regain control if the program
gets caught in a loop. The target IP and register contents help to pinpoint
the malfunction.

Pressing and releasing the ABORT switch generates a local board
condition which interrupts the microprocessor. The target registers,
reflecting the machine state at the time the abort switch was pressed, are
displayed on the screen. Any breakpoints installed in the user code are
removed, and the breakpoint table remains intact. Control is returned to the
debugger.

Reset/Abort

You may wish to perform “double-button reset” by pressing the RESET
and ABORT switches at the same time. Release RESET first, wait seven
seconds, and then release ABORT. This resets all onboard devices, as well
as sending a SYSRESET* signal if the board is the VMEbus system
controller. It also ignores the parameters stored in NVRAM, and starts
debugger execution with the same ENV parameters as if you had used the
command ENV;D.

Break

A break is generated by pressing and releasing the BREAK key on the
current-console keyboard. Break does not generate an interrupt. The only
time break is recognized is when characters are sent or received by the
console port. Break removes any breakpoints in the user code and keeps
the breakpoint table intact. Break also takes a snapshot of the machine state
if the function was entered using SYSCALL. This machine state is then
accessible to you for diagnostic purposes.

Many times it may be desirable to terminate a debugger command prior to
its completion; for example, the display of a large block of memory. Break
allows you to terminate the command.

Restarting the System

http://www.motorola.com/computer/literature 1-21

1

Board Failure

The following conditions result in a board failure. These conditions also
give a WARNING message, if possible:

❏ Board initialization error/failure

❏ Debugger object checksum error

❏ Configuration data (NVRAM ENV parameters) failure (i.e.,
checksum)

❏ Configuration data (NVRAM CNFG parameters) failure (i.e.,
checksum)

❏ Calculated MPU clock speed does not match the associative CNFG
parameter

❏ Calculated BUS clock speed does not match the associative CNFG
parameter

❏ Selftest error/failure

If the board is equipped with a board fail LED, the LED will be illuminated
when a board failure occurs.

SYSFAIL* Assertion and Negation (VMEbus Boards)

On VMEbus boards, the board fail is the same as the SYSFAIL indicator.
At reset or power-up, the debugger asserts the VMEbus SYSFAIL* line
(refer to the VMEbus specification).

The SYSFAIL* line is negated if debugger initialization is done and if
none of the board failure conditions have occurred. However, SYSFAIL*
stays asserted if any of the board failure conditions have occurred. In this
way, the state of the debugger is indicated to the user or VMEbus masters.
In a multi-computer configuration, other VMEbus masters could view the
pertinent control and status registers to determine which CPU is asserting
SYSFAIL* in the event of a board failure.

SYSFAIL* assertion and negation is also affected by the ENV command
(refer to the ENV command in Chapter 3, for more information).

1-22 Embedded Communications Computing Web Site

General Information
1

Notes Assert indicates a signal is active or true. Negate indicates a
signal is inactive or false. These terms are used
independently of the voltage levels (high or low) that they
represent.

The asterisk (*) in the signal name SYSFAIL* denotes that the
signal is true or valid when the it is low (SYSFAIL* is level
sensitive).

MPU Clock Speed Calculation

The MPU clock speed is calculated and checked against the MPU clock
speed parameter located in NVRAM, which you may set in the CNFG
command. If the check fails, a warning message is displayed. The
calculated clock speed is also checked against known clock speeds and
tolerances.

Refer to Chapter 3, for information on setting the CNFG command
parameters.

Disk I/O Support
The debugger can initiate disk input and output by communicating with
intelligent disk controllers over the PCI bus. Disk support facilities built
into the debugger consist of command-level disk operations, disk I/O
system calls (only via one of the system call instructions) for use by user
programs, and defined data structures for disk parameters (refer to Chapter
5, System Calls for information on system calls).

Parameters such as the address where the module is mapped and the type
and number of devices attached to the controller module are kept in tables
by PPCBug. Default values for these parameters are assigned at power-up
and cold-start reset, but may be altered as described in Default PPCBug
Controller and Device Parameters on page 1-27.

You can obtain a list of supported controllers with the IOI command.
Appendix E contains a list of the controllers presently supported, as well
as a list of the default configurations for each controller.

Disk I/O Support

http://www.motorola.com/computer/literature 1-23

1

Blocks and Sectors

The logical block defines the unit of information for disk devices. A disk
is viewed by PPCBug as a storage area divided into logical blocks. By
default, the logical block size is set to 256 bytes for every block device in
the system. The block size can be changed on a per device basis with the
IOT command.

The sector defines the unit of information for the media itself, as viewed
by the controller. The sector size varies for different controllers, and the
value for a specific device can be displayed and changed with the IOT
command.

When a disk transfer is requested, the start and size of the transfer is
specified in blocks. PPCBug translates this into an equivalent sector
specification, which is then passed on to the controller to initiate the
transfer. If the conversion from blocks to sectors yields a fractional sector
count, an error is returned and no data is transferred.

Device Probe

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed. This happens when system calls
.DSKRD, .DSKWR, .DSKCFIG, .DSKFMT, and .DSKCTRL, and
commands IOC, IOP, IOT, MAR, MAW, and PBOOT are used.

The device probe mechanism utilizes the SCSI commands Inquiry and
Mode Sense. If the specified controller is non-SCSI, the probe simply
returns a status of device present and unknown. The device probe makes
an entry into the device descriptor table with the pertinent data. After an
entry has been made, the next time a probe is done it simply returns with
device present status (pointer to the device descriptor).

1-24 Embedded Communications Computing Web Site

General Information
1

Disk I/O via Debugger Commands

The following debugger commands are provided for disk I/O. Refer to
Chapter 3, for instructions for their use. When a command is issued to a
particular controller LUN and device LUN, these LUNs are remembered
in the debugger so that the next disk command uses the same controller and
device.

IOI (Input/Output Inquiry)

The IOI command is used to probe the system for all possible
CLUN/DLUN combinations and display inquiry data for devices which
support it. The device descriptor table only has space for 16 device
descriptors. With the IOI command, you can view the table and clear it if
necessary.

IOP (Physical I/O to Disk)

!
Caution

If you start the IOP format procedure, it must be allowed to complete
(PPCxBug> prompt returns) or else the disk drive may be totally disabled.
This format procedure may take as long as half an hour.

The IOP command allows you to read or write blocks of data, or to format
the specified device in a certain way. IOP creates a command packet from
the arguments you specify, and then invokes the proper system call
function to carry out the operation.

IOT (I/O Configure)

The IOT command allows you to change any configurable parameters and
attributes of the device. In addition, it allows you to see the controllers
available in the system.

IOC (I/O Control)

The IOC command allows you to send command packets as defined by the
particular controller directly. IOC can also be used to look at the resultant
device packet after using the IOP command.

Disk I/O Support

http://www.motorola.com/computer/literature 1-25

1

PBOOT (Bootstrap Operating System)

The PBOOT command reads an operating system or control program from
the specified device into memory, and then transfers control to it.

With the H option, PBOOT reads an operating system or control program
from a specified device into memory, and then returns control to the
debugger.

1-26 Embedded Communications Computing Web Site

General Information
1

Disk I/O via Debugger System Calls

All operations that actually access the disk are done directly or indirectly
by debugger system calls. (The command-level disk operations provide a
convenient way of using these system calls without writing and executing
a program.)

The following system calls are provided to allow user programs to do disk
I/O:

Refer to Chapter 5, System Calls for information on using these and other
system calls.

To perform a disk operation, the debugger must present a particular disk
controller module with a controller command packet which has been
prepared for the particular type of controller module. (This is
accomplished in the respective controller driver module.) Typically, the
command packets are different for each of the controller modules. The
system call facilities which do disk I/O accept a generalized (controller-
independent) packet format as an argument, and translate it into a
controller-specific packet, which is then sent to the specified device. Refer
to the system call descriptions in Chapter 5, System Calls for details on the
format and construction of these standardized user packets.

The packets which a controller module expects to receive vary from
controller to controller. The disk driver module for the particular board
module must take the standardized packet given to a trap function and
create a new packet which is specifically tailored for the disk drive

.DSKRD Disk read - system call to read blocks from a disk into
memory

.DSKWR Disk write - system call to write blocks from memory onto
a disk

.DSKCFIG Disk configure - system call to change the configuration of
the specified device

.DSKFMT Disk format - system call to send a format command to the
specified device

.DSKCTRL Disk control - system call to implement any special device
control functions that cannot be accommodated easily with
any of the other disk functions

Disk I/O Support

http://www.motorola.com/computer/literature 1-27

1

controller it is sent to. Refer to documentation on the particular controller
module for the format of its packets. Refer to the IOC command section in
Chapter 3, Debugger Commands for information on sending command
packets.

Default PPCBug Controller and Device Parameters

PPCBug initializes the parameter tables for a default configuration of
controllers (refer to Appendix E, Disk and Tape Controllers). If the system
needs to be configured differently than this default configuration (for
example, to use a different drive), then these tables must be changed.

Use the IOT command to reconfigure the parameter table manually for
any controller and/or device that is different from the default. This is a
temporary change and is overwritten if a cold-start reset occurs.

Disk I/O Error Codes

PPCBug returns an error code if an attempted disk operation is
unsuccessful. Refer to Appendix F, Disk Status Codes for an explanation
of disk I/O error codes.

1-28 Embedded Communications Computing Web Site

General Information
1

Network I/O Support
The network autoboot firmware provides the capability to boot the CPU
through the ROM debugger using a network (local Ethernet interface) as
the boot device.

The booting process is executed in two distinct phases.

❏ The first phase allows the diskless remote node to discover its
network identify and the name of the file to be booted.

❏ The second phase has the diskless remote node reading the boot file
across the network into its memory.

Figure 1-1 on page 1-29 depicts the various modules (capabilities) and the
dependencies of these modules that support the overall network boot
function. They are described in the following paragraphs.

Physical Layer Manager Ethernet Driver

This driver surrounds and manages the Ethernet controller chip or module.
Management includes the reception of packets, the transmission of
packets, flushing of the receive buffer, and interface initialization.

This module ensures that the packaging and unpackaging of Ethernet
packets is done correctly in the Boot PROM.

UDP and IP Modules

The Internet Protocol (IP) is designed for use in interconnected systems of
packet-switched computer communication networks. The Internet
Protocol provides for transmitting blocks of data called datagrams (hence
User Datagram Protocol, or UDP) from sources to destinations, where
sources and destinations are hosts identified by fixed length addresses.

The UDP and IP protocols are necessary for the TFTP and BOOTP
protocols; TFTP and BOOTP require a UDP/IP connection.

Network I/O Support

http://www.motorola.com/computer/literature 1-29

1

Figure 1-1. Network Boot Modules

1273 9401

Bootstrap Protocol
(BOOTP)
RFC 951

Boot Control Module
(Two phases)

Trivial File Transfer
Protocol (TFTP)

RFC 783

User Datagram
Protocol (UDP)

RFC 768

Internet Protocol (IP)
RFC 791

Reverse Address
Resolution Protocol
(RARP) - RFC 903

Address Resolution
Protocol (ARP)

RFC 826

Ethernet Driver
Physical Layer

Manager

1-30 Embedded Communications Computing Web Site

General Information
1

RARP and ARP Modules

The Reverse Address Resolution Protocol (RARP) basically consists of an
identity-less node that broadcasts a “whoami” packet onto the Ethernet and
waits for an answer. The RARP server fills an Ethernet reply packet up
with the target's Internet Address and sends it.

The Address Resolution Protocol (ARP) basically provides a method of
converting protocol addresses (e.g., IP addresses) to local area network
addresses (e.g., Ethernet addresses). The RARP protocol module supports
systems which do not support the BOOTP protocol (refer to BOOTP
Module below).

BOOTP Module

The Bootstrap Protocol (BOOTP) basically allows a diskless client
machine to discover its own IP address, the address of a server host, and
the name of a file to be loaded into memory and executed.

TFTP Module

The Trivial File Transfer Protocol (TFTP) is a simple protocol to transfer
files. It is implemented on top of the Internet User Datagram Protocol
(UDP or Datagram) so it may be used to move files between machines on
different networks implementing UDP. The only thing it can do is read and
write files from/to a remote server.

Network Boot Control Module

The control capability of the Network Boot Control Module is needed to
tie together all the necessary modules (capabilities) and to sequence the
booting process. The booting sequence consists of two phases. The first is
address determination and bootfile selection, and the second is file
transfer. The first phase utilizes the RARP/BOOTP capability and the
second phase utilizes the TFTP capability.

Multiprocessor Support (Remote Start)

http://www.motorola.com/computer/literature 1-31

1

Network I/O Error Codes

PPCBug returns an error code if an attempted network operation is
unsuccessful. Refer to Appendix H, Network Communication Status
Codes for an explanation of network I/O error codes.

Multiprocessor Support (Remote Start)
PPCBug can be configured to monitor a dual-ported resource and, upon
receipt of a certain ‘signal’, pass program control to (that is, commence
execution at) a user specified address.

Note PCI Remote Start is only supported on boards equipped with the
DEC2155x PCI-to-PCI Bridge device.

A dual-ported resource is a hardware feature that makes local memory
locations or registers available to remote processors as well as to the local
processor.

This ‘remote start’ capability is provided to allow the user to take
advantage of boards with dual-ported resources to implement and
“bootstrap” a multiprocessor system where member processor boards can
be tightly coupled via an interface such as the VME bus.

The PPCBug remote start package offers remote access to certain other
PPCBug features in addition to the initiation of remote program execution.

1-32 Embedded Communications Computing Web Site

General Information
1

PPCBug remote start can be utilized by either the MPCR or GCSR
methods, which are described in the next subsections. Either or both
methods can be enabled or disabled in the non-volatile PPCBug
configuration by the ENV command. The name of this ENV parameter is
“Remote Start Method Switch”. The valid choices for this parameter are:

Multiprocessor Control Register (MPCR) Method

The MPCR method of remote start is based on the use of dual-ported local
memory resources.

A remote processor board (the host) can initiate PPCBug functions on the
target processor board by issuing commands through the remote start
memory interface. The target processor board is the one executing
PPCBug, out of its local (on-board) resources.

The remote start memory interface is implemented using two contiguous
words of local memory, defined as the Multiprocessor Control Register
(MPCR), and Multiprocessor Address Register (MPAR).

The local address of MPCR is fixed, within PPCBug’s reserved memory
area which is located in the topmost portion of local RAM. This address
can be calculated as <the local RAM size (in bytes)>-$1C000.

Note: Care should be taken not to write to memory locations
adjacent to the MPCR and MPAR as this could cause
corruption of PPCBug internal variables and vector tables,
resulting in possible PPCBug malfunction.

ENV
Parameter

Value

Remote Start Method Setting

G GCSR method only

M MPCR method only

B
both GCSR and MPCR methods
active

N none - remote start is disabled

Multiprocessor Support (Remote Start)

http://www.motorola.com/computer/literature 1-33

1

The host’s access address of the MPCR is affected by memory mapping
which is configured by the user and must be calculated accordingly.

The MPCR consists of two words used to control communication between
processors. It is organized as follows:

The status codes stored in the MPCR command/status byte are of two
types:

❏ Status returned from PPCBug (the target processor)

❏ Status set (by the host processor)

The MPCR status codes that may be written to this location by PPCBug
(the target processor) are:

Table 1-2. MPCR Method Remote Start Register Model

Register
Name

Byte
Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPCR 0
Command

/Status
Reserved

MPAR 4 Address

ASCII
Value

Hex
Value

Indicated Status

0 ($00)
Wait. PPCBug initialization is not yet
complete.

‘E’ ($45)
The program pointed to by the MPAR
address is executing.

‘R’ ($52)
Ready. The target board (PPCBug) is ready
for a remote start command to be written to
this register.

1-34 Embedded Communications Computing Web Site

General Information
1

The MPCR command codes that may be set by the host processor are:

The MPAR register contents specify an address parameter to be associated
with the remote command.

At power-up, the PPCBug self-test routines initialize RAM, including the
memory locations used for multi-processor support (MPCR and MPAR).

The MPCR contains $00 at power-up, indicating that initialization is not
yet complete. As the initialization proceeds, the execution path comes to
the "prompt" routine. Before sending the prompt, this routine places an R
in the MPCR to indicate that initialization is complete. Then the prompt is
sent.

If no terminal is connected to the port, the MPCR is still polled to see
whether an external processor requires control to be passed to the dual-port
RAM. If a terminal does respond, the MPCR is polled for the same purpose
while the serial port is being polled for user input.

An ASCII G placed in the MPCR by a remote processor requests a Go
Direct type of transfer; an ASCII B indicates that breakpoints are to be
armed before control is transferred (like the GO command).

ASCII
Value

Hex
Value

Host Command Description

‘G’ ($47)

Commence program execution using Go
Direct logic (refer to the GD command).
The address of execution is specified in the
MPAR address register.

‘B’ ($42)
Install breakpoints using the GO logic
(refer to the GO command).

‘P’ ($50)

Program flash memory. The MPAR
location contains the address of the flash
memory programing control packet.

Note: You can only program FLASH
memory by the MPCR method. See
the.PFLASH system call for a description
of the FLASH memory program control
packet structure.

Multiprocessor Support (Remote Start)

http://www.motorola.com/computer/literature 1-35

1

In either sequence, an E is placed in the MPCR to indicate that execution
is underway just before control is passed to RAM. (Any remote processor
could examine the MPCR contents.)

If the code being executed in dual-port RAM is to re-enter PPCBug, a
system call using function $0063 (SYSCALL .RETURN) returns control
to PPCBug with a new display prompt. Note that every time PPCBug
returns to the prompt, an R is moved into the MPCR to indicate that control
can be transferred once again to a specified RAM location.

GCSR Method

PPCBug supports the GCSR method of remote start, over the VMEbus, on
boards equipped with the Universe PCI to VMEbus bridge.

When PPCBug is executing on the target processor board, a host processor
board may initiate program execution by the target board’s MPU using the
GCSR method of remote start.

This method of remote start is implemented through the dual-ported
register interface provided by the Universe MBOX registers. This interface
is located at offset of $348 from the base address of the Universe CSR. The
GCSR register model and its offset within the Universe CSR is the same
regardless of which bus (VME or PCI) it is accessed from.

The GCSR method remote start register model is organized as shown in the
following table:

Table 1-3. GCSR Method Remote Start Register Model

Universe
Register

Name

Byte
Offset

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MBOX0 $348
LM/SIG
Register

Reserved GCSR0

MBOX1 $34C GCSR1 GCSR2

MBOX2 $350 GCSR3 GCSR4

MBOX3 $354 GCSR5 Not Used

1-36 Embedded Communications Computing Web Site

General Information
1

The LM/SIG register is assigned the following bit definitions:

The VME host board can initiate program execution by the target board’s
MPU by issuing a remote GO command using the GCSR registers. The
result is equivalent to the MPCR method (using command code B)
described in a previous section.

The target board GO command is invoked by the VME host with the
following sequence:

❏ The remote processor places the execution address for the target
board MPU in general purpose registers 0 and 1 (GPCSR0=MS 16
bits, GPCSR1=LS 16 bits)

❏ The remote processor sets bit SIG0 of the LM/SIG register.

❏ The PPCBug firmware which is executing on the host board will
clear SIG0, install breakpoints, and begin execution at the specified
address.

Note: The above steps assume that the Universe CSR has been mapped to
the VME address space so the host may access the Universe mailbox
registers. The recommended method of mapping the Universe CSR is to
configure the desired address and attributes with PPCBug’s ENV
command. The ENV command parameter identifiers for this are “VMEbus
Register Access Image Control Register“ and “VMEbus Register Access
Image Base Address Register“. For specific programming values, refer to
the UniverseII User Manual, available from Tundra Semiconductor
Corporation.

Table 1-4. LM/SIG Register Bit Assignments

Bit 31 30 29 28 27 26 25 24

Name Reserved Reserved Reserved Reserved Reserved Reserved Reserved SIG0

Data and Address Sizes

http://www.motorola.com/computer/literature 1-37

1

Data and Address Sizes
Data and address sizes are defined as follows:

A byte is eight bits, numbered 0 through 7, with bit 0 being the least
significant.

A half-word is 16 bits, numbered 0 through 15, with bit 0 being the least
significant.

A word is 32 bits, numbered 0 through 31, with bit 0 being the least
significant.

Byte Ordering
The MPU on the PowerPC board is programmed to big-endian byte
ordering. Any attempt to use little-endian byte ordering will immediately
render the debugger unusable.

1-38 Embedded Communications Computing Web Site

General Information
1

2-1

22Using the Debugger

Entering Commands
The debugger is command-driven and performs its various operations in
response to commands that you enter at the keyboard. When the PPCx-
Bug> prompt appears on the screen, the debugger is ready to accept
commands.

What you enter is stored in an internal buffer. Execution begins only after
you press the Return key, allowing you to correct entry errors, if necessary,
using the control characters (refer to Control Characters on page 2-6).
After the debugger executes the command, the prompt reappears.

However, if the command causes execution of target code (for example
GO) then control may or may not return to the debugger, depending on
what the program does. For example, if a breakpoint has been specified,
then control returns to the debugger when the breakpoint is encountered
during execution of the user program. For more about this, refer to the GD,
GO, and GT command descriptions in Chapter 3, Debugger Commands.

Alternately, the user program could return to the debugger by means of the
System Call Handler routine .RETURN (refer to Chapter 5, System Calls).

Command Syntax

A debugger command is made up of the following parts:

❏ The command name

❏ Any required arguments, delineated with either a space or comma
(precede the first argument with a space)

❏ Any required options. Precede an option or a string of options with
a semi-colon (;). If no option is selected, the default options are
used.

Command entry is either uppercase or lowercase.

2-2 Embedded Communications Computing Web Site

Using the Debugger

2 Command Arguments

The following arguments are common to many of the commands.
Additional arguments are defined in the description of the particular
command in which they occur.

Use either a space or a comma as a delimiter between arguments. You may
select the default value for an argument by inserting a pair of commas in
place of the argument.

EXP

The EXP (expression) argument can be one or more numeric values
separated by the arithmetic operators:

EXP Expression (refer to EXP below)

ADDR Address (refer to ADDR on page 2-4)

COUNT Count; this is a numeric expression and has the same syntax
as EXP (refer to EXP below)

RANGE A range of memory addresses specified with a pair of
arguments, either ADDR ADDR or ADDR : COUNT

TEXT An ASCII string of up to 255 characters, delimited at each
end by the single quote mark (’)

PORT Port Number (refer to PORT on page 2-6)

+ plus

- minus

* multiply by

/ divide by

& logical AND

<< shift left

>> shift right

Entering Commands

http://www.motorola.com/computer/literature 2-3

2Numeric values may be expressed in either hexadecimal, decimal, octal, or
binary by immediately preceding them with the proper base identifier.

If no base identifier is specified, then the numeric value is assumed to be
hexadecimal.

A numeric value may also be expressed as a string literal of up to four
characters. The string literal must begin and end with the single quote mark
(’). The numeric value is interpreted as the concatenation of the ASCII
values of the characters. This value is right-justified, as any other numeric
value would be.

Evaluation of an expression is always from left to right unless parentheses
are used to group part of the expression. There is no operator precedence.
Subexpressions within parentheses are evaluated first. Nested
parenthetical subexpressions are evaluated from the inside out.

Valid expression examples:

Data Type Base Identifier Example

Integer Hexadecimal $ $FFFFFFFF

Integer Decimal & &1974, &10-&4

Integer Octal @ @456

Integer Binary % %1000110

String Literal
Numeric Value
(Hexadecimal)

’A’ 41

’ABC’ 414243

’TEST’ 54455354

Expression Result (Hex)

FF0011 FF0011

45+99 DE

&45+&99 90

@35+@67+@10 5C

2-4 Embedded Communications Computing Web Site

Using the Debugger

2

The total value of the expression must be between 0 and $FFFFFFFF.

ADDR

The syntax for the ADDR argument is similar to the syntax accepted by the
PowerPC one-line assembler. All control addressing modes are allowed.
Refer to Addressing Modes in Chapter 4, One-Line Assembler/
Disassembler.

ADDR may also be specified in the address + offset form.

ADDR Formats

The ADDR format is:

HexadecimalNumber {[^S]|[^s]|[^U]|[^u]}|Rn

Enter ADDR as a hexadecimal number (e.g., 20000 for address
$00020000). The address, or starting address of a range, can be qualified
by a suffix, either ^S or ^s for supervisor address space, or ^U or ^u for
user address space. The default, when the suffix is not specified, is
supervisor.

Once a qualifier has been entered, it remains valid for all addresses entered
for that command sequence, until either the debugger is reentered or
another qualifier is provided.

In the alternate register number (Rn) form, the debugger uses the address
contained in MPU Register Rn, where n is 0 through 31 (i.e., 0, 1, . . . 31).

%10011110+%1001 A7

88<<4 880

AA&F0 A0

<< represents shift-left

& represents logical AND

Expression Result (Hex)

Entering Commands

http://www.motorola.com/computer/literature 2-5

2If the address range specified as ADDR ADDR, with a size option of either
H (half-word) or W (word), data at the second (ending) address is acted on
only if the second address is a proper boundary for a half-word or word.
Otherwise, the range is truncated so that the last byte acted upon is at an
address that is a proper boundary.

Offset Registers

Eight pseudo-registers (Z0-Z7) called offset registers are used to simplify
the debugging of relocatable and position-independent modules. The
listing files in these types of programs usually start at an address (normally
0) that is not the one at which they are loaded, so it is harder to correlate
addresses in the listing with addresses in the loaded program. The offset
registers solve this problem by taking into account this difference and
forcing the display of addresses in a relative address+offset format. Offset
registers have adjustable ranges and may even have overlapping ranges.
The range for each offset register is set by two addresses, base and top,
both of which are standard in a given 64-bit offset register. Specifying the
base and top addresses for an offset register sets its range. In the event that
an address falls in two or more offset registers’ ranges, the one that yields
the least offset is chosen.

Note Relative addresses are limited to 1MB (5 digits), regardless of the
range of the closest offset register.

2-6 Embedded Communications Computing Web Site

Using the Debugger

2 PORT

The PORT argument is the logical number of the port to be used to input
or output. Valid port numbers which may be used for these commands are
as follows:

Command Options

Many commands have one or more options, represented in boldface type
in the command descriptions. Precede an option or a string of options with
a semi-colon (;). If no option is entered, the command’s default options are
used.

Control Characters

Some commands, such as CNFG, MM, or RM, allow you to edit
parameter fields or the contents of registers or memory. You may use the
following control characters to scroll through the listed items:

0 or 00 Terminal port 0 (console port) is used for interactive user
input and output (the default), or may also be used for the
graphics adapter device. This port is labeled COM1 or
SER1 or DEBUG on the PowerPC board or transition
module.

1 or 01 Terminal port 1 (host port) is the default for downloading,
uploading, concurrent mode, and transparent modes. This
port is labeled either COM2 or SER2 on the PowerPC
board or transition module.

V or v Go to the next field, register, or memory location. This is the
default, and remains in effect until changed by entering one of the
other special characters.

^ Back up to the previous field register, or memory location. This
remains in effect until changed by entering one of the other
special characters.

= Re-open the same field register, or memory location.

. Terminate the command, and return to PPC1-Bug> prompt

Entering and Debugging Programs

http://www.motorola.com/computer/literature 2-7

2You may use the following control characters for limited editing while
entering commands at the PPC1-Bug> prompt:

The XON and XOFF characters in effect for the terminal port may be
entered to control the output from any debugger command, if the
XON/XOFF protocol is enabled (default). The characters initialized by
PPCBug are (you may change them with the PF command):

Entering and Debugging Programs
There are various ways to enter a user program into system memory for
execution. One way is to create the program using the
Assembler/Disassembler, entering the program one source line at a time.
After each source line is entered, it is assembled and the object code is
loaded to memory. Refer to Chapter 4 for information on using the
PPCBug Assembler/Disassembler.

DEL Delete: move the cursor back one position and erase the character
at the new cursor position. If a printer port is configured
(hardcopy mode), a slash (/) character is typed along with the
deleted character.

CTRL-h Performs the same function as DEL.

CTRL-x Cancel line: move the cursor to the beginning of the line.

If a printer port is configured (hardcopy mode), a <CR><LF>
sequence is issued along with another PPC1-Bug> prompt.

CTRL-d Redisplay the entire command line entered on the following line

CTRL-a Repeat the previous line.

This happens only at the command line. The last line entered is
redisplayed but not executed. The cursor is positioned at the end
of the line. You may enter the line as is or you can add more
characters to it. You can edit the line by backspacing and typing
over old characters.

CTRL-s Wait: halt console output (XON)

CTRL-q Resume console output (XOFF).

2-8 Embedded Communications Computing Web Site

Using the Debugger

2 Another way is to download an object file from a host system. The
program must be in S-record format (refer to Appendix D) and may have
been assembled or compiled on the host system. Alternately, you may
create a program using the Assembler/Disassembler, and store the program
to the host using the DU command. A communication link must exist
between the host system and PowerPC board port 1 (Refer to the board
installation and use manual). Later, download the file from the host to
PowerPC board memory with the LO command.

 Once the object code has been loaded into memory, you can set
breakpoints if desired and run the code or trace through it.

System Call Routines in User Programs
Access to various debugger routines is provided via the System Call
Handler. This gives a convenient way of doing character input/output and
many other useful operations so that you do not have to write these routines
into the target code.

The System Call handler is accessible through the SC (system call)
instruction, with exception vector $00C00 (System Call Exception).

Refer to Chapter 5, System Calls for details on the routines available and
how to invoke them from within a user program.

Preserving the Operating Environment
This section explains how to avoid contaminating the operating
environment of the debugger. PPCBug uses some of the PowerPC board
onboard resources to contain temporary variables and exception vectors. If
the resources that PPCBug relies upon are disturbed, PPCBug may not
function reliably.

If your application enables translation through the Memory Management
Unit (MMU), and utilizes resources of the debugger (e.g., system calls),
your application must create the necessary translation tables for the
debugger to have access to its various resources. The debugger honors the
enabling of the MMU; it does not alter or disable translation.

Preserving the Operating Environment

http://www.motorola.com/computer/literature 2-9

2Memory Requirements

The debugger requires approximately 768KB (maybe less) of read/write
memory. It allocates this amount of memory from the top portion of
memory space. For example, on a system which contains 64 megabytes
($04000000) of read/write memory (DRAM), the debugger’s memory
page is located at $03F40000 to $03FFFFFF.

This memory space is used by the debugger for program stack, I/O buffers,
variables, and register files. If a user program is loaded (booted, S-
Records) into memory, and if this program is utilizing the debugger’s
programmatic interface (i.e., system calls), the program must not modify
this allocated memory.

Whenever the host hardware is reset, the target IP is initialized to
$00004000 (i.e., just above the memory space of the exception vector
table), and the target pseudo stack pointer is initialized to the starting
location of the debugger’s read/write memory space. The target IP is set to
the appropriate address if a program load operation (for example, the
PBOOT command) is initiated.

Note that user programs should handle the stack area properly in that it
should not write starting at the initialized location. Some compilers and
assemblers may write to the stack prior to decrementing the stack.

The amount of read/write memory space that is allocated for the debugger,
and by the debugger, may increase in future releases. To properly
compensate for the increased read/write memory requirements, user
programs may use the target register R1 as indicator for the top (plus 1) of
usable memory.

Exception Vectors

The following exception vectors are reserved for use by the debugger:

00100 - System Reset Used for the abort switch soft reset feature

00700 - Program Used for instruction breakpoints

00C00 - System Call Used for the System Call Handler

02000 - Run Mode Used for instruction tracing

2-10 Embedded Communications Computing Web Site

Using the Debugger

2 These vectors may be taken over under a user’s application. However,
prior to returning control to the debugger these vectors must be restored for
proper operation of the affected features.

MPU Registers

Certain MPU registers must be preserved for their specific uses.

MPU Register SPR275

MPU register SPR275 is reserved for usage by the debugger. If SPR275 is
to be used by the user program, it must be restored prior to using debugger
resources (system calls) and or returning control to the debugger.

MPU Registers SPR272-SPR274

These MPU registers are used by the debugger as scratch registers.

Context Switching
Context switching is the switching from the debugger state to the user
(target) state, or vice versa. This switching occurs upon the invocation of
either the GD, GN, GO, GT, T, or TT commands, or the return from user
state to the debugger state.

When the context switch transitions from the user state to the debugger
state, the following MPU registers are captured:

PPC603-based boards:

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SR0-SR15 Segment Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 18, 19, 22, 25, 26, 27
268, 269, 275, 282, 287, 528 - 543, 976 - 981, 1008, 1010)

IP Instruction Pointer (copy of SPR26)

MSR Machine State Register (copy of SPR27)

Context Switching

http://www.motorola.com/computer/literature 2-11

2

When the context switch transitions from the debugger state to the user
state, the following MPU registers are restored:

CR Condition Register

FPSCR Floating Point Status/Control Register

PPC604-based boards:

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SR0-SR15 Segment Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 18, 19, 22, 25, 26, 27
268, 269, 275, 282, 287, 528 - 543, 1008, 1010, 1013, 1023)

IP Instruction Pointer (copy of SPR26)

MSR Machine State Register (copy of SPR27)

CR Condition Register

FPSCR Floating Point Status/Control Register

PPC603-based boards:

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 275, 1010)

IP Instruction Pointer, copied to SPR26

MSR Machine State Register, copied to SPR27

CR Condition Register

FPSCR Floating Point Status/Control Register

PPC604-based boards:

0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

SPRn Special Purpose Registers (n is 1, 8, 9, 275, 1010, 1013,
1023)

2-12 Embedded Communications Computing Web Site

Using the Debugger

2

Note that on a restoration context switch, registers whose perspectives
feature MMU characteristics and operating modes of the MPU are not
restored. The debugger honors the user’s MMU configuration. If the user’s
program wishes to utilize the programmatic interface (i.e., system calls) of
the debugger, it must maintain the address translation of 1 to 1, and the I/O
resources utilized by the debugger must be data cache inhibited.

Floating Point Support
The MD and MM commands allow display and modification of floating
point data in memory. Use either the MD command or the MM command
to assemble or disassemble floating point instructions.

Valid data types that can be used when modifying a floating point data
register or a floating point memory location:

When entering data in single or double precision format, observe the
following rules:

❏ The sign field is the first field and is a binary field.

IP Instruction Pointer, copied to SPR26

MSR Machine State Register, copied to SPR27

CR Condition Register

FPSCR Floating Point Status/Control Register

Integer Data Types

Byte 12

Half-Word 1234

Word 12345678

Floating Point Data Types

Single Precision Real 1_FF_7FFFFF

Double Precision Real 1_7FF_FFFFFFFFFFFFF

Scientific Notation
(decimal)

-3.12345678901234501_E+123

Floating Point Support

http://www.motorola.com/computer/literature 2-13

2❏ The exponent field is the second field and is a hexadecimal field.

❏ The mantissa field is the last field and is a hexadecimal field.

❏ The sign field, the exponent field, and at least the first digit of the
mantissa field must be present (any unspecified digits in the
mantissa field are set to zero).

❏ Each field must be separated from adjacent fields by an underscore.

❏ All the digit positions in the sign and exponent fields must be
present.

Single Precision Real

The single precision real format would appear in memory as:

A single precision number takes 4 bytes in memory.

Double Precision Real

The double precision real format would appear in memory as:

A double precision number takes 8 bytes in memory.

Note The single and double precision formats have an implied integer
bit (always 1).

1-bit sign field (1 binary digit)

8-bit biased exponent field (2 hex digits, Bias = $7F)

23-bit fraction field (6 hex digits)

1-bit sign field (1 binary digit)

11-bit biased exponent field (3 hex digits, Bias = $3FF)

52-bit fraction field (13 hex digits)

2-14 Embedded Communications Computing Web Site

Using the Debugger

2 Scientific Notation

The scientific notation format provides a convenient way to enter and
display a floating point decimal number. Internally, the number is
assembled into a packed decimal number and then converted into a number
of the specified data type.

Entering data in this format requires the following fields:

❏ An optional sign bit (+ or -).

❏ One decimal digit followed by a decimal point.

❏ Up to 17 decimal digits (at least one must be entered).

❏ An optional Exponent field that consists of:

– An optional underscore.

– The Exponent field identifier, letter E.

– An optional Exponent sign (+, -).

– From 1 to 3 decimal digits.

For more information about the floating point unit, refer to the PowerPC
603 RISC Microprocessor User’s Manual, the PowerPC 604 RISC
Microprocessor User’s Manual, or the PowerPC 750 RISC
Microprocessor User’s Manual.

3-1

33Debugger Commands

Introduction
This chapter contains descriptions of each debugger command, with one or
more examples of each. The debugger commands are listed in Table 3-1.

Debugger Commands
All valid debugger commands are listed in the table below, and are
described in alphabetical order on the following pages. The command
syntax is shown using the symbols explained in Chapter 2.

Table 3-1. Debugger Commands

Command Description
AS One Line Assembler
BC Block of Memory Compare
BF Block of Memory Fill
BI Block of Memory Initialize
BM Block of Memory Move
BR Breakpoint Insert
NOBR Breakpoint Delete
BS Block of Memory Search
BV Block of Memory Verify
CACHE Modify Cache State
CM Concurrent Mode
NOCM No Concurrent Mode
CNFG Configure Board Information Block
CS Checksum
CSAR PCI Configuration Space READ Access (NOTE 2)
CSAW PCI Configuration Space WRITE Access (NOTE 2)
DC Data Conversion
DMA Move Block of Memory
DS One Line Disassembler
DU Dump S-Records
ECHO Echo String
ENV Set Environment

3-2 Embedded Communications Computing Web Site

Debugger Commands

3
FORK Fork Idle MPU at Address (NOTE 2)
FORKWR Fork Idle MPU with Registers (NOTE 2)
GD Go Direct (Ignore Breakpoints)
GEVBOOT Global Environment Variable Boot (NOTE 1)
GEVDEL Global Environment Variable Delete (NOTE 1)
GEVDUMP Global Environment Variable(s) Dump (NOTE 1)
GEVEDIT Global Environment Variable Edit (NOTE 1)
GEVINIT Global Environment Variable Initialization (NOTE 1)
GEVSHOW Global Environment Variable(s) Display (NOTE 1)
GN Go to Next Instruction
G, GO Go Execute User Program
GT Go to Temporary Breakpoint
HE Help
IBM Indirect Block Move
IDLE Idle Master MPU (NOTE 2)
IOC I/O Control for Disk
IOI I/O Inquiry
IOP I/O Physical (Direct Disk Access)
IOT I/O Teach for Configuring Disk Controller
IRD Idle MPU Register Display (NOTE 2)
IRM Idle MPU Register Modify (NOTE 2)
IRS Idle MPU Register Set (NOTE 2)
LO Load S-Records from Host
MA Macro Define/Display
NOMA Macro Delete
MAE Macro Edit
MAL Enable Macro Listing
NOMAL Disable Macro Listing
MAR Load Macros
MAW Save Macros
MD, MDS Memory Display
MENU System Menu
M, MM Memory Modify
MMD Memory Map Diagnostic
MMGR Memory Manager
MS Memory Set
MW Memory Write
NAB Automatic Network Boot
NAP Nap MPU (NOTE 2)
NBH Network Boot Operating System, Halt
NBO Network Boot Operating System

Table 3-1. Debugger Commands (Continued)

Command Description

Debugger Commands

http://www.motorola.com/computer/literature 3-3

3
NIOC Network I/O Control
NIOP Network I/O Physical
NIOT Network I/O Teach (Configuration)
NPING Network Ping
OF Offset Registers Display/Modify
PA Printer Attach
NOPA Printer Detach
PBOOT Bootstrap Operating System
PF Port Format
NOPF Port Detach
PFLASH Program FLASH Memory
PS Put RTC into Power Save Mode
RB ROMboot Enable
NORB ROMboot Disable
RD Register Display
REMOTE Remote
RESET Cold/Warm Reset
RL Read Loop
RM Register Modify
RS Register Set
RUN MPU Execution/Status (NOTE 2)
SD Switch Directories
SET Set Time and Date
SROM SROM Examine/Modify (NOTE 2)
SYM Symbol Table Attach
NOSYM Symbol Table Detach
SYMS Symbol Table Display/Search
T Trace
TA Terminal Attach
TIME Display Time and Date
TM Transparent Mode
TT Trace to Temporary Breakpoint
VE Verify S-Records Against Memory
VER Revision/Version Display
WL Write Loop

Table 3-1. Debugger Commands (Continued)

Command Description

3-4 Embedded Communications Computing Web Site

Debugger Commands

3

Notes 1. This command was added at revision 1.8 of PPCBug,
dated 10/05/95.

2. This command was added at Revision 3.1 of PPCBug, dated
2/26/97.

Debugger Commands

http://www.motorola.com/computer/literature 3-5

3

AS - One-Line Assembler

Command Input

AS ADDR

Description

The AS command provides access to the one-line assembler. It is
synonymous with the Memory Modify (MM) command when used with
the DI option (MM ADDR ;DI). Refer to M, MM - Memory Modify on
page 3-130 for details on using the MM command. Refer to Chapter 4,
One-Line Assembler/ Disassembler for information on using the one-line
assembler.

3-6 Embedded Communications Computing Web Site

Debugger Commands

3

BC - Block of Memory Compare

Command Input

BC RANGE ADDR [;B|H|W]

Options

Description

The BC command compares the contents of memory defined by RANGE
with another place in memory, beginning at ADDR.

The option field is only allowed when RANGE is specified using a
COUNT. In this case, the B, H, or W defines the size of the data that the
COUNT is referring to. For example, a COUNT of 4 with an option of W
would mean to compare 4 words (16 bytes). The default data type is word.

No confirmation is printed if the memory being compared matches. If the
memory does not match, each mismatch is displayed. If the RANGE
beginning address is greater than or equal to the end address, an error
message is displayed and no comparison takes place.

For the following examples, assume that memory blocks 20000-20020 and
21000-21020 contain identical data.

Examples

Example 1: Compare the memory, with nothing printed.

PPC1-Bug>BC 20000 2001F 21000 <Return>
Effective address: 00020000
Effective address: 0002001F
Effective address: 00021000
PPC1-Bug>

B Byte

H Half-word

W Word

Debugger Commands

http://www.motorola.com/computer/literature 3-7

3

Example 2: Compare the memory, with nothing printed.

PPC1-Bug>BC 20000:20 21000;B <Return>
Effective address: 00020000
Effective count : &32
Effective address: 00021000
PPC1-Bug>

Example 3: Create a mismatch (using the MM command), and prints out
the mismatches.

PPC1-Bug>MM 2100F;B <Return>
0002100F 21? 0. <Return>
PPC1-Bug>

PPC1-Bug>BC 20000:20 21000;B <Return>
Effective address: 00020000
Effective count : &32
Effective address: 00021000
0002000F|21 0002100F|00
PPC1-Bug>

3-8 Embedded Communications Computing Web Site

Debugger Commands

3

BF - Block of Memory Fill

Command Input

BF RANGE data [increment] [;B|H|W]

Arguments

Options

Description

The BF command fills the specified range of memory with a data pattern
(data). If an increment is specified, then data is incremented by this value
following each write, otherwise data remains a constant value.

A decrementing pattern may be accomplished by entering a negative
increment. The data you enter is right-justified in either a byte, half-word,
or word field (as specified by the data field length selected). The default
field length is W (word).

data Data pattern to be written to memory.

If data does not fit into the selected data field length, then leading
bits are truncated to make it fit. If truncation occurs, then a
message is printed stating the data pattern which was actually
written (or initially written if you specified an increment).

increment Value that data is incremented following each write.

If increment does not fit into the data field size, then leading bits
are truncated to make it fit. If truncation occurs, then a message is
printed stating the increment which was actually used.

B Byte

H Half-word

W Word

Debugger Commands

http://www.motorola.com/computer/literature 3-9

3

If the upper address of the range is not on the correct boundary for an
integer multiple of the data to be stored, then data is stored to the last
boundary before the upper address. No address outside of the specified
range is ever disturbed in any case. The Effective address
messages displayed by the command show exactly where data was stored.

Examples

Example 1: For this example, assume that memory from $20000 through
$2002F is clear.

Because no option is specified, the length of the data field defaults to word.

PPC1-Bug>BF 20000,2001F 4E71 <Return>
Effective address: 00020000
Effective address: 0002001F
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 4E71 0000 4E71 0000 4E71 0000 4E71 ..Nq..Nq..Nq..Nq
00020010 0000 4E71 0000 4E71 0000 4E71 0000 4E71 ..Nq..Nq..Nq..Nq
00020020 0000 0000 0000 0000 0000 0000 0000 0000

Example 2: For this example, assume that memory from $20000 through
$2002F is clear.

The specified data does not fit into the specified data field size, the data is
truncated, and the Data = message is output.

PPC1-Bug>BF 20000:10 4E71;B <Return>
Effective address: 00020000
Effective count : &16
Data = $71
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 7171 7171 7171 7171 7171 7171 7171 7171 qqqqqqqqqqqqqqqq
00020010 0000 0000 0000 0000 0000 0000 0000 0000
00020020 0000 0000 0000 0000 0000 0000 0000 0000
PPC1-Bug>

Example 3: For this example, assume that memory from $20000 through
$2002F is clear.

The word pattern does not fit evenly in the given range. Only one word is
written and the Effective address messages reflect the fact that data
is not written all the way up to the specified address.

3-10 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>BF 20000,20006 12345678;W <Return>
Effective address: 00020000
Effective address: 00020003
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 1234 5678 0000 0000 0000 0000 0000 0000 .4Vx............
00020010 0000 0000 0000 0000 0000 0000 0000 0000
00020020 0000 0000 0000 0000 0000 0000 0000 0000

Example 4: For this example, assume memory from $20000 through
$2002F is clear.

PPC1-Bug>BF 20000:18 0 1;H <Return>
Effective address: 00020000
Effective count : &48
PPC1-Bug>

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 0001 0002 0003 0004 0005 0006 0007
00020010 0008 0009 000A 000B 000C 000D 000E 000F
00020020 0010 0011 0012 0013 0014 0015 0016 0017
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-11

3

BI - Block of Memory Initialize

Command Input

BI RANGE [;B|H|W]

Options

Description

The BI initializes parity for a block of memory. The BI command is non-
destructive; if the parity is correct for a memory location, then the contents
of that memory location are not altered.

The limits of the block of memory to be initialized may be specified using
a RANGE. The option field specifies the data size in which memory is
initialized if RANGE is specified using a COUNT. The option also
specifies the size of data element to which the COUNT refers. The length
option is valid only when a COUNT is used. The default data type is word.

BI works through the memory block by reading from locations and
checking parity. If the parity is not correct, then the data read is written
back to the memory location in an attempt to correct the parity. If the parity
is not correct after the write, then the message RAM FAIL is output and
the address is given.

This command may take several seconds to initialize a large block of
memory.

Examples

Example 1:

PPC1-Bug>BI 0:10000;B <Return>
Effective address: 00000000
Effective count : &65536
PPC1-Bug>

B Byte

H Half-word

W Word

3-12 Embedded Communications Computing Web Site

Debugger Commands

3

Example 2: For this example, assume system memory from $0 to
$000FFFFF.

PPC1-Bug>BI 0,1FFFFF <Return>
Effective address: 00000000
Effective address: 001FFFFF
RAM FAIL AT $00100000
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-13

3

BM - Block of Memory Move

Command Input

BM RANGE ADDR [;B|H|W]

Options

Description

The BM command copies the contents of the memory addresses defined
by RANGE to another place in memory, beginning at ADDR.

The option field is only allowed when RANGE is specified using a
COUNT. In this case, the B, H, or W defines the size of the data that the
COUNT is referring to. For example, a COUNT of 4 with an option of W
would mean to move 4 words (or 16 bytes) to the new location. If an option
field is specified without a COUNT in the RANGE, an error results.

The BM command is useful for patching assembly code in memory (refer
to example 2).

The default data size is word.

Examples

Example 1: For this example, assume that memory from 20000 to 2000F
is clear.

PPC1-Bug>MD 21000:10;H <Return>
00021000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
00021010 0000 0000 0000 0000 0000 0000 0000 0000
PPC1-Bug>

PPC1-Bug>BM 21000 2100F 20000 <Return>
Effective address: 00021000
Effective address: 0002100F
Effective address: 00020000
PPC1-Bug>

B Byte

H Half-word

W Word

3-14 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>MD 20000:10;H <Return>
00020000 5448 4953 2049 5320 4120 5445 5354 2121 THIS IS A TEST!!
00020010 0000 0000 0000 0000 0000 0000 0000 0000
PPC1-Bug>

Example 2: Patch assembly code in memory

For this example, assume that you had a short program in memory at
address 20000 (displayed with the MD command).

PPC1-Bug>MD 20000 2000F;DI <Return>
00020000 3C401000 ADDIS R2,R0,$1000
00020004 60420001 ORI R2,R2,$1
00020008 7C631378 OR R3,R3,R2
0002000C 7CA53214 ADD R5,R5,R6
PPC1-Bug>

To insert an ANDC between the OR instruction and the ADD instruction,
Block Move the object code down four bytes to make room for the ANDC.

PPC1-Bug>BM 20008 20010 2000C <Return>
Effective address: 00020008
Effective address: 0002000F
Effective address: 0002000C
PPC1-Bug>

PPC1-Bug>MD 20000 20014;DI <Return>
00020000 3C401000 ADDIS R2,R0,$1000
00020004 60420001 ORI R2,R2,$1
00020008 7C631378 OR R3,R3,R2
0002000C 7C631378 OR R3,R3,R2
00020010 7CA53214 ADD R5,R5,R6
PPC1-Bug>

Enter the ANDC at address 20008 using the MM command.

PPC1-Bug>MM 20008;DI <Return>
00020008 7C631378 OR R3,R3,R2? ANDC R3,R3,R2 <Return>
00020008 7C631078 ANDC R3,R3,R2
0002000C 7C631378 OR R3,R3,R2? . <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-15

3

PPC1-Bug>MD 20000 20014;DI <Return>
00020000 3C401000 ADDIS R2,R0,$1000
00020004 60420001 ORI R2,R2,$1
00020008 7C631078 ANDC R3,R3,R2
0002000C 7C631378 OR R3,R3,R2
00020010 7CA53214 ADD R5,R5,R6
PPC1-Bug>

3-16 Embedded Communications Computing Web Site

Debugger Commands

3

BR - Breakpoint Insert
NOBR - Breakpoint Delete

Command Input

BR [ADDR[:COUNT]]

NOBR [ADDR]

Description

The BR command sets a target code instruction address as a breakpoint
address for debugging purposes. If, during target code execution, a
breakpoint with 0 count is found, the target code state is saved in the target
registers and control is returned back to the debugger. This allows you to
see the actual state of the processor at selected instructions in the code.

Up to eight breakpoints can be defined. The breakpoints are kept in a table
which is displayed each time either BR or NOBR is used. If an address is
specified with the BR command, that address is added to the breakpoint
table.

The COUNT argument specifies how many times the instruction at the
breakpoint address must be fetched before a breakpoint is taken. The
COUNT, if greater than zero, is decremented with each fetch. Every time
a breakpoint with zero count is found, a breakpoint handler routine prints
the CPU state on the screen and control is returned to the debugger.

NOBR is used for deleting breakpoints from the breakpoint table. If an
address is specified, then that address is removed from the breakpoint
table. If NOBR is entered with no address, then all entries are deleted from
the breakpoint table and the empty table is displayed.

Examples

Example 1: Set some breakpoints.

PPC1-Bug>BR 1E000,1E200 1E700:&12 <Return>
BREAKPOINTS
0001E000 0001E200
0001E700:C
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-17

3

Example 2: Delete specified breakpoint.

PPC1-Bug>NOBR 1E200 <Return>
BREAKPOINTS
0001E000 0001E700:C
PPC1-Bug>

Example 3: Delete all breakpoints.

PPC1-Bug>NOBR <Return>
BREAKPOINTS
PPC1-Bug>

3-18 Embedded Communications Computing Web Site

Debugger Commands

3

BS - Block of Memory Search

Command Input

BS RANGE TEXT [;B|H|W]

or

BS RANGE data [mask] [;B|H|W [,N] [,V]]

Arguments

Options

Description

The BS command searches the specified range of memory for a match with
a an ASCII text string or a data pattern. This command has three modes.

String Search

In the string search mode, a search is carried out for the TEXT
argument. The size option field indicates whether the COUNT field of
RANGE refers to bytes, half-words, or words. If RANGE is not
specified using a COUNT, then no options are allowed. If a match is
found, then the address of the first byte of the match is output.

TEXT An ASCII text string that is matched against a range of memory

data Data pattern that is matched against a range of memory

mask A string that indicates which bit positions in data to compare to
memory (a one is compared, a zero is not). The default is all ones.

B Byte

H Half-word

W Word

N Non-aligned. The search is conducted on a byte-by-byte basis,
rather than by half-words or words, regardless of the size of data.

V Verify. Addresses and data are displayed only when the memory
contents do not match data.

Debugger Commands

http://www.motorola.com/computer/literature 3-19

3

Data Search

In the Data Search mode, a data pattern (data) is matched against a
range of memory. The size option indicates whether the COUNT field
in RANGE refers to bytes, half-words, or words (the default is word).

The following actions occur during a data search:

1. data is right-justified and leading bits are truncated or leading zeros
are added as necessary to make the data pattern the specified size.

2. A compare is made with successive bytes, half-words, or words
(depending on the size in effect) within the range for a match with
data.

Comparison is made only on those bits at bit positions
corresponding to a one in mask. If mask is not specified, the default
is all ones (all bits are compared). The size of the mask is taken to
be the same size as the data.

If the N (non-aligned) option is selected, data is searched for on a
byte-by-byte basis, rather than by half-words or words, regardless of
the size of data. This is useful if a half-word (or word) pattern is
being searched for, but is not expected to lie on a half-word (or
word) boundary.

3. If a match is found, then the address of the first byte of the match is
output along with the memory contents. If a mask was in use, then
the actual data at the memory location is displayed, rather than the
data with the mask applied.

Data Verification

If the V (verify) option has been selected, the addresses and data are
displayed only when the memory contents do not match data.
Otherwise this mode is identical to the Data Search mode.

For all three modes, information on matches is output to the screen in a
four-column format. If more than 24 lines of matches are found, then
output is inhibited to prevent the first match from rolling off the screen. A
message is printed at the bottom of the screen indicating that there is more

3-20 Embedded Communications Computing Web Site

Debugger Commands

3

to display. To resume output, you should simply press any character key.
To cancel the output and exit the command, you should press the BREAK
key.

If a match is found (or, in the case of Mode 3, a mismatch) with a series of
bytes of memory whose beginning is within the range but whose end is
outside of the range, then that match is output and a message is output
stating that the last match does not lie entirely within the range. You may
search non-contiguous memory with this command without causing a Bus
Error.

For the examples below, assume the following data is in memory.

00030000 0000 0045 7272 6F72 2053 7461 7475 733D ...Error Status=
00030010 3446 2F2F 436F 6E66 6967 5461 626C 6553 4F//ConfigTableS
00030020 7461 7274 3A00 0000 0000 0000 0000 0000 tart:...........

Examples

Example 1: Mode 1: The string is not found, so a message is output.

PPC1-Bug>BS 30000 3002F ’Task Status’ <Return>
Effective address: 00030000
Effective address: 0003002F
-not found-
PPC1-Bug>

Example 2: Mode 1: The string is found, and the address of its first byte
is output.

PPC1-Bug>BS 30000 3002F ’Error Status’ <Return>
Effective address: 00030000
Effective address: 0003002F
00030003
PPC1-Bug>

Example 3: Mode 1: The string is found, but it ends outside of the range,
so the address of its first byte and a message are output.

PPC1-Bug>BS 30000 3001F ’ConfigTableStart’ <Return>
Effective address: 00030000
Effective address: 0003001F
00030014
-last match extends over range boundary-
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-21

3

Example 4: Mode 1, using RANGE with COUNT and size option: COUNT
is displayed in decimal, and address of each occurrence of the string is
output.

PPC1-Bug>BS 30000:30 ’t’;B <Return>
Effective address: 00030000
Effective count : &48
0003000A 0003000C 00030020 00030023
PPC1-Bug>

Example 5: Mode 2, using RANGE with COUNT: COUNT is displayed
in decimal bytes, and the data pattern is found and displayed.

PPC1-Bug>BS 30000:18,2F2F;H <Return>
Effective address: 00030000
Effective count : &48
00030012|2F2F
PPC1-Bug>

Example 6: Mode 2, the default size is word and the data pattern is not
found, so a message is output.

PPC1-Bug>BS 30000,3002F 3D34 <Return>
Effective address: 00030000
Effective address: 0003002F
-not found-
PPC1-Bug>

Example 7: Mode 2, the size is half-word and non-aligned option is used,
so the data pattern is found and displayed.

PPC1-Bug>BS 30000,3002F 3D34;HN <Return>
Effective address: 00030000
Effective Address: 0003002F
0003000F|3D34
PPC1-Bug>

3-22 Embedded Communications Computing Web Site

Debugger Commands

3

Example 8: Mode 2, using RANGE with COUNT, mask option, and size
option: COUNT is displayed in decimal, and the actual unmasked data
patterns found are displayed.

PPC1-Bug>BS 30000:30 60,F0;B <Return>
Effective address: 00030000
Effective count : &48
00030006|6F 0003000B|61 00030015|6F 00030016|6E
00030017|66 00030018|69 00030019|67 0003001B|61
0003001C|62 0003001D|6C 0003001E|65 00030021|61
PPC1-Bug>

Example 9: Mode 3, on a different block of memory, mask option, scan
for words with low nibble nonzero: two locations failed to verify.

PPC1-Bug>BS 3000 1FFFF 0000 000F;VH <Return>
Effective address: 00003000
Effective address: 0001FFFF
0000C000|E501 0001E224|A30E
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-23

3

BV - Block of Memory Verify

Command Input

BV RANGE data [increment] [;B|H|W]

Arguments

Options

Description

The BV command compares the specified range of memory against a data
pattern. If an increment is specified, then data is incremented by this value
following each comparison, otherwise data remains a constant value. A
decrementing pattern may be accomplished by entering a negative
increment. The data you entered is right-justified in either a byte, half-
word, or word field (as specified by the option selected). The default field
length is W (word).

If the range is specified using a COUNT, then the COUNT is assumed to
be in terms of the data size.

data Data pattern to be compared to memory.

If data does not fit into the selected data field length, then leading
bits are truncated to make it fit. If truncation occurs, then a
message is printed stating the data pattern which was actually
written (or initially written if you specified an increment).

increment Value that data is incremented following each write.

If increment does not fit into the data field size, then leading bits
are truncated to make it fit. If truncation occurs, then a message is
printed stating the increment which was actually used.

B Byte

H Half-word

W Word

3-24 Embedded Communications Computing Web Site

Debugger Commands

3

If the upper address of the range is not on the correct boundary for an
integer multiple of the data to be verified, data is verified to the last
boundary before the upper address. No address outside of the specified
range is read from in any case. The Effective address messages
displayed by the command show exactly the extent of the area read from.

Examples

Example 1: For this example, assume memory from $20000 to $2002F is
as indicated. In this example the default data element size is word, and the
block verify was successful (i.e., nothing printed).

PPC1-Bug>MD 20000:18;H <Return>
00020000 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020010 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
00020020 4E71 4E71 4E71 4E71 4E71 4E71 4E71 4E71 NqNqNqNqNqNqNqNq
PPC1-Bug>

PPC1-Bug>BV 20000 2001F 4E714E71 <Return>
Effective address: 00020000
Effective address: 0002001F
PPC1-Bug>

Example 2: For this example, assume memory from $20000 to $2002F is
as indicated. Mismatches are printed out.

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 0000 0000 0000 0000 0000 0000 0000
00020010 0000 0000 0000 0000 0000 0000 0000 0000
00020020 0000 0000 0000 0000 0000 4AFB 4AFB 4AFBJ{J{J{
PPC1-Bug>

PPC1-Bug>BV 20000:30 0;B <Return>
Effective address: 00020000
Effective count : &48
0002002A|4A 0002002B|FB 0002002C|4A 0002002D|FB
0002002E|4A 0002002F|FB
PPC1-Bug>

Example 3: For this example, assume memory from $20000 to $2002F is
as indicated. Size is half-word, mismatches are printed out.

PPC1-Bug>MD 20000:18;H <Return>
00020000 0000 0001 0002 0003 0004 0005 0006 0007
00020010 0008 FFFF 000A 000B 000C 000D 000E 000F
00020020 0010 0011 0012 0013 0014 0015 0016 0017
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-25

3

PPC1-Bug>BV 20000:18 0 1;H <Return>
Effective address: 00020000
Effective count : &48
00020012|FFFF
PPC1-Bug>

3-26 Embedded Communications Computing Web Site

Debugger Commands

3

CACHE - Cache Control

Command Input

CACHE;[D|E]

Options

D Disable instruction caches
E Enable instruction caches

Description

The CACHE command modifies the state of the L1 and L2 instruction
caches. the disable option flushes both caches and then disables them. The
enable option invalidates both caches and then enables them. Both
commands can be safely executed from any cache state.

Example

PPC4-Bug>cache;d(L1 and L2 instruction caches are off)
PPC4-Bug>cache;e (L1 and L2 instruction caches are on)

Debugger Commands

http://www.motorola.com/computer/literature 3-27

3

CM - Concurrent Mode
NOCM - No Concurrent Mode

Command Input

CM [[PORT] [ID-STRING] [BAUD] [PHONE-NUMBER]]|[;A]|[;H]

NOCM

Arguments

ID-STRING Device (i.e. modem) with which communications is
established before the concurrent mode session is
activated.

If no identifier string is specified, CM will use an
identifier string of “DUMB” by default.

The identifier string must be one that is supported. If the
identifier string is not found in the supported list, CM
displays an error message.

BAUD Baud rate.

The baud rate must be supported by the device and must
be supported by the debugger (110, 300, 600, 1200,
2400, 4800, 9600, 19200).

If no baud rate is specified, CM uses the default baud
rate for the device. This is also displayed along with the
supported devices. If the baud rate is not supported, CM
displays an error message.

PHONE-NUMBER Phone number.

This may be a string of any alphanumeric characters.
This string is passed directly to the device driver if
needed. In the case of modems, this string is added to
the dial recognition string. If the phone number field is
not specified, a dial-in condition is assumed (wait for
call).

3-28 Embedded Communications Computing Web Site

Debugger Commands

3

Options

Description

The CM command activates a mode in which everything that appears on
the system console terminal is also echoed to the port specified by the
PORT argument.

PORT is checked for inbound characters. These are also echoed to the
system console terminal. If no port is specified, CM uses port 1 by default.

PORT must already be configured. The baud rate need not be specified
because the port is reconfigured prior to activation. The preconfiguration
of the port is done by using the PF (Port Format) command. If PORT is not
currently assigned, CM displays an error message.

For any reason you may abort the concurrent mode setup by pressing the
BREAK key. This may be necessary if the modem is not responding to
commands from the debugger.

The NOCM command terminates concurrent mode which was activated
by the CM command. Depending on the device and the port specified with
the CM command, the communication link is appropriately closed.

Examples

Example1: List all devices supported by the debugger:

PPC1-Bug>CM;A <Return>
Concurrent Devices Supported
Device Name (ID-STRING) Default Baud
DUMB 9600
UDS2662 1200
UDS2980 1200
UDS3382 1200

Example 2: Activate the concurrent mode.

PPC1-Bug>CM <Return>
Concurrent Mode Active

A List all supported devices.

H Displays whether concurrent mode is active or not, and if it is, what
secondary port number is being used by it.

Debugger Commands

http://www.motorola.com/computer/literature 3-29

3

This results in the default settings remaining intact:

Example 3: Activate the concurrent mode, with changes to the modem and
the phone number.

PPC1-Bug>CM,,UDS2662,,16024383020 <Return>
Concurrent Mode Active

This results in the following changes:

Example 4: Activate the concurrent mode, with changes to the modem and
the phone number.

PPC1-Bug>CM,,UDS2662,,16024383020 <Return>
Concurrent Mode Active
PPC1-Bug>CM,,UDS2662,,16024383020 <Return>
Concurrent Mode Already Active
PPC1-Bug>

An error occurs on the second entry because the concurrent mode is
already active.

Example 3: Activate the concurrent mode, with changes to the modem,
baud rate, and phone number.

PPC1-Bug>CM 2 UDS2980 1200 18007777777 <Return>
Concurrent Mode Active
PPC1-Bug>

PORT 1

ID-STRING DUMB

BAUD 9600 (default if ID-STRING is “DUMB”)

PHONE-NUMBER null

PORT 1

ID-STRING UDS2662

BAUD 1200 (default if ID-STRING is “UDS2662”)

PHONE-NUMBER 16024383020

3-30 Embedded Communications Computing Web Site

Debugger Commands

3

This results in the following changes:

Example 5: Activate the concurrent mode, with error.

PPC1-Bug>CM 2,,DUMB <Return>
Concurrent Mode Setup Failure
PPC1-Bug>

Example 6: Terminate the concurrent mode.

PPC1-Bug>NOCM <Return>
Concurrent Mode Terminated
PPC1-Bug>

Example 7: Attempt to terminate the previously terminated concurrent
mode.

PPC1-Bug>NOCM <Return>
Concurrent Mode Not Active
PPC1-Bug>

PORT 2

ID-STRING UDS2980

BAUD 1200

PHONE-NUMBER 18007777777

Debugger Commands

http://www.motorola.com/computer/literature 3-31

3

CNFG - Configure Board Information Block

Command Input

CNFG [;[I] [M]]

Options

Description

The CNFG command displays the configure the board information block,
and allows you to change the contents. The board information block,
which is resident within the Non-Volatile RAM (NVRAM), contains
various elements detailing specific operation parameters of the PowerPC
board. which have been set up by the factory. The CNFG command does
not describe the elements and their use.

The board information block contents are checksummed for validation
purposes. This checksum is the last element of the block.

Refer to the board installation and use manual for the location, and
contents of the board information block, and the size and logical offset of
each element.

The parameters that are quoted are left-justified ASCII strings padded with
space characters. The quotes are displayed to indicate the size of the string.
Parameters that are not quoted are considered data strings, and data strings
are right-justified. The data strings are padded with zeroes if the length is
not met.

The CNFG information is configured in the factory. There is no need ever
to modify these values unless the NVRAM gets corrupted.

Option M allows you to modify the board information block. When
invoked, this command prompts for entry into each field. You may change
the displayed value by typing a new value, followed by the Return key. To
leave the field unaltered, press the Return key without typing a new value.

I Initialize the board information block to zero.

M Modify the board information block.

3-32 Embedded Communications Computing Web Site

Debugger Commands

3

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

At the end of the modification session, you are prompted whether or not to
update the NVRAM. Enter Y to cause the update to occur; any other
response terminates the update (disregards all changes). The update also
recalculates the checksum.

Note Be careful when modifying parameters. Correct board operation
relies upon these parameters.

In the event of corruption of the board information block, the command
displays question marks for nondisplayable characters. A warning
message is also displayed in the event of a checksum failure.

Note When upgrading from an earlier version of the firmware, prior to
PPC1BUG 1.7, it may be necessary to match the processor and
bus clock frequencies to those displayed by the firmware during
sign on. This only needs to be done if the firmware complains that
there is a mismatch in values. To correct it, invoke CNFG;M
from the firmware command line to correct the mismatched
values.

V or v Go to the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up to the previous field. This remains in effect until
changed by entering one of the other special characters.

= Re-open the same field

. Terminate the CNFG command, and return control to the
debugger

Debugger Commands

http://www.motorola.com/computer/literature 3-33

3

Examples

Example 1: Shown below is a sample of a valid board information block:

PPC1-Bug>CNFG <Return>
Board (PWA) Serial Number= “MOT000061050”
Board Identifier= “MVME2603-001”
Artwork (PWA)= “01-W3015F01A”
MPU Clock Speed= “233”
Bus Clock Speed= “067”
Ethernet Address= 08003E20C983
Primary SCSI Identifier= “07”
System Serial Number= “163725”
System Identifier= “Motorola Series E603-166P”
License Identifier= “12345678”
PPC1-Bug>

Example 2: Shown below is a board information block with corrupted
data.

PPC1-Bug>CNFG <Return>
WARNING: Board Information Block Checksum Error
Board (PWA) Serial Number = "????????????"
Board Identifier = "????????????????"
Artwork (PWA) Identifier = "????????????????"
MPU Clock Speed = "????"
Bus Clock Speed = "????"
Ethernet Address = 000000000000
Primary SCSI Identifier = "??"
System Serial Number = "?????????????"
System Identifier = "?????????????????????????"
License Identifier = "12345678 "
PPC1-Bug>

3-34 Embedded Communications Computing Web Site

Debugger Commands

3

Example 3: Modify the Board Information Block.

PPC1-Bug>CNFG;M <Return>
WARNING: Board Information Block Checksum Error
Board (PWA) Serial Number = "????????????"? MOT000061050
Board Identifier = "????????????????"? MVME2603-001
Artwork (PWA) Identifier = "????????????????"? 01-W3015F01A
MPU Clock Speed = "????"? 233
Bus Clock Speed = "????”? 067
Ethernet Address = 000000000000? 08003E20C983
Primary SCSI Identifier = "??"? 07
System Serial Number = "163725 "
System Identifier = "Motorola Series E603-166P "
License Identifier = "12345678 "
Update Non-Volatile RAM (Y/N)? y
PPC1-Bug>

Example 4: View the Board Information Block and the updates.

PPC1-Bug>CNFG
Board (PWA) Serial Number = "MOT000061050"
Board Identifier = "MVME2603-001 "
Artwork (PWA) Identifier = "01-W3015F01A "
MPU Clock Speed = “233”
Bus Clock Speed = "067”
Ethernet Address = 08003E20C983
Primary SCSI Identifier = "07"
System Serial Number = "163725 "
System Identifier = "Motorola Series E603-166P "
License Identifier = "12345678 "
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-35

3

CS - Checksum

Command Input

CS RANGE [;B|H|W]

Options

Description

The CS command calculates a checksum to verify the contents of a block
of memory. It uses the same checksum routine that is run at system start-
up. The checksum algorithm works as follows:

1. The checksum variable is set to zero.

2. Each data element is added to the checksum. If a carry is generated,
a one is added to the checksum variable.

This process is repeated for each data element until the ending address is
reached.

The option field serves both as a data size identifier and scale factor if a
COUNT is specified as part of the RANGE. The size option is byte, half-
word, or word for the items checked. The default data size is word.

The addresses used in the RANGE parameters can be provided in two
forms:

❏ An absolute address (32-bit maximum).

❏ An expression using a displacement + relative offset register.

B Byte

H Half-word

W Word

3-36 Embedded Communications Computing Web Site

Debugger Commands

3

Examples

Example 1: Default size is word.

PPC1-Bug>CS 1000 2000 <Return>
Effective address: 00001000
Effective address: 00001FFF
Checksum: FF8D3E87
PPC1-Bug>

Example 2: Size is set to half-word.

PPC1-Bug>CS 1000 2000;H <Return>
Effective address: 00001000
Effective address: 00001FFF
Checksum: 3E15
PPC1-Bug>

Example 3: Size is set to byte, COUNT is in hexadecimal.

PPC1-Bug>CS FF800000:400;B <Return>
Effective address: FF800000
Effective count : &1024
Checksum: 1C
PPC1-Bug>

Example 4: Default size is word, COUNT is in hexadecimal.

PPC1-Bug>CS FF800000:400 <Return>
Effective address: FF800000
Effective count : &4096
Checksum: 00B50D05
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-37

3

CSAR - PCI Configuration Space READ Access

Command Input

CSAR busnum devnum function addr [;B|H|W]

Options

Description

The CSAR command reads the location in PCI configuration space of the
device at the PCI bus number specified by:

CSAR displays the value read.

Example: To read the register at offset 8 of the PCI device on PCI bus 0,
which has a device ID of 12 (decimal), and function 0 of that device, do:

PPC1-Bug>csar 0 c 0 8<Return>
Read Data = 01000013
PPC1-Bug>

B Byte

H Half-word

W Word (default)

busnum = the PCI bus number to be read

devnum = the device number to be read

function = the device function number to be read

addr = the offset into the device configuration registers. addr
must be between 0 and 255 decimal.

size (optional) = the size of the location to be read

3-38 Embedded Communications Computing Web Site

Debugger Commands

3

CSAW - PCI Configuration Space WRITE Access

Command Input

CSAW busnum devnum function addr data [;B|H|W]

Options

Description

The CSAW command writes data to the location of the device in PCI
configuration space at the PCI bus number specified by:

Example: To write the hexadecimal number a into the byte register at
offset 3C of the PCI device on PCI bus 0, which has a device ID of 12
(decimal), and function 0 of that device, do:

PPC1-Bug>csaw 0 c 0 3C a;b<Return>
PPC1-Bug>

B Byte

H Half-word

W Word (default)

busnum = the PCI bus number to be read

devnum = the device number to be read

function = the device function number to be read

addr = the offset into the device configuration registers. addr
must be between 0 and 255 decimal.

data = the data that should be written

size (optional) = the size of the location to be read

Debugger Commands

http://www.motorola.com/computer/literature 3-39

3

DC - Data Conversion

Command Input

DC EXP | ADDR [;[B] [O] [A]]

Options

Description

The DC command calculates an expression into a single numeric value.
This equivalent value is displayed in its hexadecimal and decimal
representation. If the numeric value could be interpreted as a signed
negative number (i.e., if the most significant bit of the 32-bit internal
representation of the number is set), then both the signed and unsigned
interpretations are displayed.

Examples

Example 1:

PPC1-Bug>DC 10 <Return>
 00000010 = $10 = &16
PPC1-Bug>

Example 2:

PPC1-Bug>DC &10-&20 <Return>
SIGNED : FFFFFFF6 = -$A = -&10
UNSIGNED: FFFFFFF6 = $FFFFFFF6 = &4294967286
PPC1-Bug>

Example 3:

PPC1-Bug>DC 123+&345+@67+%1100001 <Return>
 00000314 = $314 = &788
PPC1-Bug>

B Display the output in binary

O Display the output in octal

A Display the ASCII character equal to the value. If the value is greater
than $7F, the A option displays NA.

3-40 Embedded Communications Computing Web Site

Debugger Commands

3

Example 4:

PPC1-Bug>DC (2*3*8)/4 <Return>
 0000000C = $C = &12
PPC1-Bug>

Example 5:

PPC1-Bug>DC 55&F <Return>
 00000005 = $5 = &5
PPC1-Bug>

Example 6:

PPC1-Bug>DC 55>>1 <Return>
 0000002A = $2A = &42
PPC1-Bug>

Example 7:

PPC1-Bug>DC 1+2;B <Return>
DATA BIT: 33222222222211111111110000000000
NUMBER>>: 10987654321098765432109876543210
BINARY : 00000000000000000000000000000011
PPC1-Bug>

Example 8:

PPC1-Bug>DC 1+2;BO <Return>
DATA BIT: 33222222222211111111110000000000
NUMBER>>: 10987654321098765432109876543210
BINARY : 00000000000000000000000000000011
OCTAL : 00000000003
PPC1-Bug>

Example 9:

PPC1-Bug>DC 1+2;BOA <Return>
DATA BIT: 33222222222211111111110000000000
NUMBER>>: 10987654321098765432109876543210
BINARY : 00000000000000000000000000000011
OCTAL : 00000000003
ASCII : ETX
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-41

3

Example 10: For this example, assume R2=00030000 and the following
data resides in memory:

00030000 11111111 22222222 33333333 44444444 """"3333DDDD

PPC1-Bug>DC R2 <Return>
 00030000 = $30000 = &196608
PPC1-Bug>

3-42 Embedded Communications Computing Web Site

Debugger Commands

3

DMA - Block of Memory Move

Note This command works on boards with a VME2 bridge only.

Command Input

DMA RANGE ADDR VDIR AM BLK [;B|H|W]

Arguments

VDIR Direction of the transfer.

0 means the transfer occurs from the local bus to the VMEbus; 1 means
the transfer occurs from the VMEbus to the local bus.

AM VMEbus address modifier of the transfer.

Refer to the VMEbus specification for the complete list of address
modifiers. The VMEbus transfer address must also support transfers
with the selected address modifier. Refer to the applicable board
installation and use manual.

BLK Block transfer mode, which can be one of the following:

0 Block transfers disabled.

1 The DMA controller executes D32 block transfer cycles on the
VMEbus. In the block transfer mode, the DMA controller may
execute byte and two-byte cycles at the beginning and ending of
a transfer in non-block transfer mode.

2 Block transfers disabled.

3 The DMA controller executes D64 block transfer cycles on the
VMEbus. In the block transfer mode, the DMA controller may
execute byte, two-byte, and four-byte cycles at the beginning
and ending of a transfer in non-block transfer mode.

Debugger Commands

http://www.motorola.com/computer/literature 3-43

3

Options

Description

The DMA command moves blocks of data from the local bus to the
VMEbus, or from the VMEbus to the local bus. This command. utilizes the
hardware capability of Direct Memory Access (DMA). Refer to the board
installation and use manual for a detailed description of DMA. You can not
perform a DMA from the local bus to the local bus, or from the VMEbus
to the VMEbus.

The DMA command copies (DMAs) the contents of the memory addresses
defined by RANGE to another place in memory, beginning at ADDR.

The option field is only allowed when RANGE is specified using a
COUNT. In this case, the B, H, or W defines the size of the data to which
the COUNT is referring. For example, a COUNT of four with an option of
W means to move four words (or 16 bytes) to the new location. If an option
field is specified without a COUNT in the RANGE, an error results. The
default data type is word.

Refer to the VMEbus specification for the complete description of block
transfer mode. The VMEbus transfer address must also support block
transfers if enabled, refer to the applicable board installation and use
manuals.

At the end of the transfer, the DMA command displays the completion
status of the transfer. A completion status of $1 is a successful transfer.
Any other completion status means that the transfer was not successful.
This status comes directly from the hardware status from the DMA
controller.

Note If the block transfer modes are used to transfer data make sure
that your VMEbus and VME memory actually support the block
transfer modes.

B Byte

H Half-word

W Word

3-44 Embedded Communications Computing Web Site

Debugger Commands

3

When the command is given on a non-VMEbus board, the following
message is shown:

This system does not host a VMEbus.

Be sure to set the high bit when specifying the address for the local
memory. Setting the high bit directs the address to the PCI bus. The PCI
bus actually strips the high bit and passes the address onward. When
specifying the VMEbus address, be sure to specify the exact VME memory
address (refer to the examples below). Refer to the board installation and
use manual for information on the VMEbus.

Examples

Example 1: Transfer data from the VMEbus to the local bus with D32
block transfer cycles.

Fill memory on the VMEbus with an incrementing pattern (starts with a
value of 0 and increments by 4). This makes it easier to illustrate some
memory moves (DMAs) between the local bus and the VMEbus.

PPC1-Bug>BF C1000000 C2000000 0 4
Effective address: C1000000
Effective address: C1FFFFFF
PPC1-Bug>

First a range is given for the source location of the data on the VMEbus.
Note that this is an exact address on the VMEbus. (From the beginning of
the VME memory ($01000000 to $01800000).

Memory
Location

(Processor View)

As Used in
the DMA

Command

$0 $80000000

$4000 $80004000

$C1000000 $01000000

$C1002000 $01002000

Debugger Commands

http://www.motorola.com/computer/literature 3-45

3

The destination for the memory transfer is back to local memory on the
board beginning at $0. Notice, that on the destination address the high bit
is set. This is due to the PCI bus, the PCI bus masks the high bit and the
actual data transfer maps to $0 (the beginning of local memory).

The VDIR argument is specified as $1 here because the transfer in this case
should occur from the VMEbus to the local bus. The AM parameter is
specified as $D to indicate (Extended Supervisory Data Access) for a
simple data transfer. In this case, the block transfer was set to $1 which
means that the DMA controller executes D32 block transfer cycles on the
VMEbus.

PPC1-Bug>DMA 01000000 01800000 80000000 1 d 1 <Return>
Effective address: 01000000
Effective address: 017FFFFF
Effective address: 80000000
DMA Completion Status =00000001
PPC1-Bug>

By displaying the local memory which was the destination for the transfer
we can see that the data from the VMEbus was transferred to local
memory.

PPC1-Bug>MDS 0 <Return>
00000000 00000000 00000004 00000008 0000000C
00000010 00000010 00000014 00000018 0000001C
00000020 00000020 00000024 00000028 0000002C $...(...,
00000030 00000030 00000034 00000038 0000003C ...0...4...8...<
00000040 00000040 00000044 00000048 0000004C ...@...D...H...L
00000050 00000050 00000054 00000058 0000005C ...P...T...X...\
00000060 00000060 00000064 00000068 0000006C ...‘...d...h...l
00000070 00000070 00000074 00000078 0000007C ...p...t...x...|
00000080 00000080 00000084 00000088 0000008C
00000090 00000090 00000094 00000098 0000009C
000000A0 000000A0 000000A4 000000A8 000000AC
000000B0 000000B0 000000B4 000000B8 000000BC
000000C0 000000C0 000000C4 000000C8 000000CC
000000D0 000000D0 000000D4 000000D8 000000DC
000000E0 000000E0 000000E4 000000E8 000000EC
000000F0 000000F0 000000F4 000000F8 000000FC
00000100 00000100 00000104 00000108 0000010C
00000110 00000110 00000114 00000118 0000011C
00000120 00000120 00000124 00000128 0000012C $...(...,
00000130 00000130 00000134 00000138 0000013C ...0...4...8...<
00000140 00000140 00000144 00000148 0000014C ...@...D...H...L

3-46 Embedded Communications Computing Web Site

Debugger Commands

3

00000150 00000150 00000154 00000158 0000015C ...P...T...X...\
00000160 00000160 00000164 00000168 0000016C ...‘...d...h...l
00000170 00000170 00000174 00000178 0000017C ...p...t...x...|
00000180 00000180 00000184 00000188 0000018C
00000190 00000190 00000194 00000198 0000019C
000001A0 000001A0 000001A4 000001A8 000001AC
000001B0 000001B0 000001B4 000001B8 000001BC
000001C0 000001C0 000001C4 000001C8 000001CC
000001D0 000001D0 000001D4 000001D8 000001DC
000001E0 000001E0 000001E4 000001E8 000001EC
000001F0 000001F0 000001F4 000001F8 000001FC
PPC1-Bug>

Example 2: Transfer data from the local bus to the VMEbus using D32
block transfer cycles.

PPC1-Bug>DMA 80000000 80800000 01000000 0 d 1 <Return>
Effective address: 80000000
Effective address: 807FFFFF
Effective address: 01000000
DMA Completion Status =00000001
PPC1-Bug>

We can use the block verify command to show that the incrementing
pattern was copied to the destination VMEbus memory.

PPC1-Bug>BV C1000000 C1800000 0 4 <Return>
Effective address: C1000000
Effective address: C17FFFFF
PPC1-Bug>

Example 3: Transfer data from the local bus to the VMEbus. First, show
the data at the destination so we can see it change.

PPC1-Bug>MD 100000:40 <Return>
00100000 7C3043AF 7CFFFBBF 7C3143A7 48FFFFDF |0C.|...|1C.H...
00100010 00000001 00FFFC0F 00000003 00FFFFFF
00100020 00048003 00FFFFFF 00000008 00FFFEEF
00100030 0000000F 00FFFFFF 0000000D 00FFFEEF
00100040 00000000 00FFF10F 0000000E 00FFFD5F _
00100050 00000000 00FFF2EF 00000003 00FFFFBF
00100060 0000000E 00FFFFFF 0000000A 00FFFEAF
00100070 0000068E 00FFFFBF 00000001 00FFFEFF
00100080 00000002 00FFF39F 00000002 00FFF39F
00100090 00000001 00FFF91F 00000003 00FFFDDF
001000A0 0000800F A0FFFFFF 0000020F 00FFF6EF
001000B0 0000000D 00FFFFEF 0000200E 00FFF7FF

Debugger Commands

http://www.motorola.com/computer/literature 3-47

3

001000C0 00000004 00FFF88F 00000005 00FFFF2F /
001000D0 00000009 00FFF84F 00000005 00FFFDDF O........
001000E0 0008050F 00FFFFFF 0000000F 00FFFFFF
001000F0 0000000D 00FFFF2F 00000008 00FFF7EF /........
PPC1-Bug>DMA 80100000:40 01000000 0 d 0;W <Return>
Effective address: 80100000
Effective count : &256
Effective address: 01000000
DMA Completion Status =00000001
PPC1-Bug>

In the above example, 256 bytes of data was moved from the local bus to
the VMEbus. At the end of the transfer, the DMA command displays the
completion status of the transfer.

View the transferred data:

PPC1-Bug>MD C1000000:40 <Return>
C1000000 7C3043AF 7CFFFBBF 7C3143A7 48FFFFDF |0C.|...|1C.H...
C1000010 00000001 00FFFC0F 00000003 00FFFFFF
C1000020 00048003 00FFFFFF 00000008 00FFFEEF
C1000030 0000000F 00FFFFFF 0000000D 00FFFEEF
C1000040 00000000 00FFF10F 0000000E 00FFFD5F _
C1000050 00000000 00FFF2EF 00000003 00FFFFBF
C1000060 0000000E 00FFFFFF 0000000A 00FFFEAF
C1000070 0000068E 00FFFFBF 00000001 00FFFEFF
C1000080 00000002 00FFF39F 00000002 00FFF39F
C1000090 00000001 00FFF91F 00000003 00FFFDDF
C10000A0 0000800F A0FFFFFF 0000020F 00FFF6EF
C10000B0 0000000D 00FFFFEF 0000200E 00FFF7FF
C10000C0 00000004 00FFF88F 00000005 00FFFF2F /
C10000D0 00000009 00FFF84F 00000005 00FFFDDF O........
C10000E0 0008050F 00FFFFFF 0000000F 00FFFFFF
C10000F0 0000000D 00FFFF2F 00000008 00FFF7EF /........
PPC1-Bug>

Example 4: Transfer data from the VMEbus to the local bus.

Display the 64 bytes of data on the VMEbus which are to be transferred.

PPC1-Bug>MD C1000000:10 <Return>
C1000000 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
C1000010 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
C1000020 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
C1000030 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
PPC1-Bug>

3-48 Embedded Communications Computing Web Site

Debugger Commands

3

Transfer the 64 bytes from the beginning of VMEbus memory to location
$2000 in local memory. A display of the local memory shows the newly
transferred data.

PPC1-Bug>DMA 01000000:10 80002000 1 D 0 <Return>
Effective address: 01000000
Effective count : &64
Effective address: 80002000
DMA Completion Status =00000001
PPC1-Bug>MD 00002000:10 <Return>
00002000 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
00002010 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
00002020 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ
00002030 5A5A5A5A 5A5A5A5A 5A5A5A5A 5A5A5A5A ZZZZZZZZZZZZZZZZ

Example 5: Attempt to DMA to non-existent VMEbus memory. The
command displays the DMA controller status register and the DMA
controller counter registers.

PPC1-Bug>DMA 80000000:15 05000000 0 D 0;B <Return>
Effective address: 80000000
Effective count : &21
Effective address: 05000000
DMA Completion Status =00000002
DMA Byte Counter =00000000
DMA Local Bus Address Counter =80000015
DMA VMEbus Address Counter =05000004
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-49

3

DS - One-Line Disassembler

Command Input

DS ADDR [:COUNT | ADDR]

Description

The DS command enables the one-line disassembler. This command is
synonymous with the Memory Display (MD) command when used with
the DI option (MD ADDR;DI). Refer to MD, MDS - Memory Display on
page 3-125 for details. Refer to Chapter 4 for information on using the one-
line assembler.

3-50 Embedded Communications Computing Web Site

Debugger Commands

3

DU - Dump S-Records

Command Input

DU [PORT] RANGE [TEXT] [ADDR] [OFFSET] [;B|H|W]

Description

The DU command outputs data from memory in the form of Motorola S-
records to a port you specified. If port is not specified, the S-records are
sent to the host port, and the missing port number must be delimited by two
commas.

A size option is allowed only if a COUNT was entered as part of the
RANGE, and defines the units of the COUNT. The default data type is byte.

The optional TEXT argument is for text that will be incorporated into the
header (S0) record of the block of records that will be dumped.

The optional ADDR argument is to allow you to enter an entry address for
code contained in the block of records. This address is incorporated into
the address field of the block termination record. If no entry address is
entered, then the address field of the termination record will consist of
zeros. The termination record will be an S7, S8, or S9 record, depending
on the address entered. Appendix D has additional information on S-
records.

You may also specify an optional offset in the OFFSET argument. The
offset value is added to the addresses of the memory locations being
dumped, to come up with the address which is written to the address field
of the S-records. This allows you to create an S-record file which will load
back into memory at a different location than the location from which it
was dumped. The default offset is zero.

Note If an offset is to be specified but no entry address is to be
specified, then two commas (indicating a missing field) must
precede the offset to keep it from being interpreted as an entry
address.

Debugger Commands

http://www.motorola.com/computer/literature 3-51

3

Examples

Example 1: Dump memory from $20000 to $2002F to port 1.

PPC1-Bug>DU ,,20000 2002F <Return>
Effective address: 00020000
Effective address: 0002002F
PPC1-Bug>

Example 2: Dump 10 bytes of memory beginning at $30000 to the
terminal screen (port 0).

PPC1-Bug>DU 0 30000:&10 <Return>
Effective address: 00030000
Effective count : &10
S0030000FC
S20E03000026025445535466084E4F7B
S9030000FC
PPC1-Bug>

Example 3: Dump memory from $20000 to $2002F to host (port 1).
Specify a file named TEST in the header record and specify an entry point
of $2000A.

PPC1-Bug>DU ,,20000 2002F ’TEST’ 2000A <Return>
Effective address: 00020000
Effective address: 0002002F
PPC1-Bug>

3-52 Embedded Communications Computing Web Site

Debugger Commands

3

ECHO - Echo String

Command Input

ECHO [PORT] {hexadecimal number} {’string’}

Description

The ECHO command displays strings to a configured port. ASCII strings
can be entered by enclosing them in single quotes (’). To include a quote
as part of a string, enter two consecutive quotes.

The hexadecimal number allows printing <NL>, <CR>, and other control
symbols. A hexadecimal number must have two digits before it is
displayed.

Note that one or more hexadecimal numbers and ASCII strings may be
entered in the same command.

If the port number is not specified (substituted by commas), ECHO uses
the current console port.

Examples

Example 1: Display the ASCII string to the current console port.

PPC1-Bug>ECHO ,,’quick brown fox jumps over the lazy dog’ 0A <Return>
quick brown fox jumps over the lazy dog
PPC1-Bug>

Example 2: Send the ASCII string and a BELL character to port #1.

PPC1-Bug>ECHO 1 ’this is a test’ 07 <Return>
PPC1-Bug>

Example 3: In this example an error message results because the selected
port is not configured.

PPC1-Bug>ECHO 2 ’this is a test’ <Return>
Logical unit $02 unassigned
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-53

3

Example 4: This example handles a string with quotes.

PPC1-Bug>ECHO ,, ’This is "PPCBUG"’ <Return>
This is “PPCBUG”
PPC1-Bug>

3-54 Embedded Communications Computing Web Site

Debugger Commands

3

ENV - Set Environment

Command Input

ENV [;[D]]

Description

The ENV command allows you to view and configure all PPCBug
operational parameters that are kept in Non-Volatile RAM (NVRAM).
The operational parameters are saved in NVRAM and used whenever
power is lost. (The NVRAM is also known as the Battery Backed Up
RAM.)

Any time PPCBug uses a parameter from NVRAM, the NVRAM contents
are first tested by checksum to insure the integrity of the NVRAM
contents. In the instance of NVRAM checksum failure, certain default
values are assumed.

The debugger operational parameters (which are kept in NVRAM) are not
initialized automatically on power-up/warm reset. It is up to you to invoke
the ENV command. Once the ENV command is invoked and executed
without error, debugger default and/or user parameters are loaded into
NVRAM along with checksum data. If any of the operational parameters
have been modified, these new parameters will not be in effect until a reset
or power-up condition.

If the ENV command is invoked with the D option, ROM defaults will be
loaded into NVRAM. If the ENV command is invoked without the D
option, you are prompted to configure all operational parameters. You may
change the displayed value by typing a new value, followed by the Return
key. To leave the field unaltered, press the Return key without typing a
new value.

Refer to the board installation and use manual for the location and contents
of the board information block, and the size and logical offset of each
element.

Note Not all ENV parameters are shown in this manual.

Debugger Commands

http://www.motorola.com/computer/literature 3-55

3

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

Programming The VMEbus Slave Image Map Decoders.

The VMEbus slave image map decoders allow a VMEbus master to access
the resources on the local primary PCI bus, and control the type of access
to those resources. These decoders are located in the Universe VMEbus
interface chip. The following general procedure can be used with the ENV
command to configure the VMEbus slave image map decoders. This is not
the only procedure that can be used to program the map decoders. More
complete information on this subject can be found in the User’s Manual for
the Universe chip, the VMEbus specification, the PCI bus specification,
and the Programmer’s Guide for the specific board being used.

1. Determine the desired VMEbus base address. This is the starting, or
lowest, address that any resource on the local PCI bus can be
accessed on the VMEbus. This address must not allow an overlap of
the Universe’s control and status registers or any other VMEbus
resource’s address space. The first VMEbus slave decoder (for
VME slave image 0) has a 4K-byte resolution but VMEbus slave
images 1, 2, and 3, have a 64K-byte resolution.

2. Determine the desired VMEbus bound address. This is the ending,
or highest, address that any resource on the local PCI bus can be
accessed on the VMEbus. The address on the VMEbus must lie
within the window defined by the base and bound addresses to gain
a response.

3. Determine any necessary VMEbus translation offset. The offset
value is added to the VMEbus address to create the PCI bus address.

V or v Go to the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up to the previous field. This remains in effect until
changed by entering one of the other special characters.

= Re-open the same field

. Terminate the ENV command, and return control to the
debugger

3-56 Embedded Communications Computing Web Site

Debugger Commands

3

4. Determine the necessary VMEbus slave image control. The value
used for slave image control is made up of several bit fields which
specify how reads and writes will be processed by the Universe
device. The desired value can be determined by progressively
ORing together the selected bit fields described below.

To select the type of PCI address space that will respond in the
defined VMEbus window, use the following:
0x00000000 for PCI Memory space, zero no bits are set.
0x00000001 for PCI I/O space.
0x00000002 for PCI Configuration space.

To lock PCI transactions resulting from VMEbus Read-Modify-
Writes, OR the following value with that chosen above:
0x00000040

To enable 64-bit PCI transactions, OR the following value with
those chosen above: 0x00000080

To select the VMEbus address space accesses to decode, OR the
value defined here with those chosen above:
0x00000000 for A16 space, zero no bits are set.
0x00010000 for A24 space.
0x00020000 for A32 space.

To select the mode of VMEbus accesses to decode, OR the value
defined here with those chosen above:
0x00100000 for non-privileged.
0x00200000 for supervisor.
0x00300000 for both non-privileged and supervisor, two bits set.

To select the type of VMEbus accesses to decode, OR the value
defined here with those chosen above:
0x00400000 for data.
0x00800000 for program.
0x00C00000 for both data and program, two bits are set.

To enable prefetch reads for incoming VMEbus block read cycles,
OR the following value with those chosen above:
0x20000000

To enable posted writes of incoming data on the VMEbus, OR the
following value with those chosen above: 0x40000000

Debugger Commands

http://www.motorola.com/computer/literature 3-57

3

To enable the selected VME Slave Image Map Decoder, OR the
following value with those chosen above: 0x80000000

As an example, a control value of: 0xE0F20000
decodes A32, non-privileged and supervisor, data and program
VMEbus space, with prefetch reads, and posted writes enabled.

It is the user’s responsibility to ensure that the selected control bits
are not destructive, and that the resources present on the VMEbus
and PCI bus support the access and transaction controls chosen.

ENV Command Parameters

The parameters that can be configured with ENV are listed and described
in your board-specific installation and use manual.

Systems with Wide SCSI Drives Running AIX

If AIX (or some other OS) is booted on a system with wide SCSI drives,
and then the system is reset, PPCBug will not be able to access the wide
SCSI drives. This problem may be corrected by running ENV and enabling
PPCBug to reset the SCSI bus on startup as follows:

Local SCSI Bus Reset on Debugger Startup [Y/N] = N? y

This ENV change should be made to all PowerPlus architecture systems
running AIX.

Note This problem is fixed in PPCBug release 3.2 and later.

LED/Serial Startup Diagnostic Codes

These codes can be displayed at key points in the initialization of the
hardware devices. Should the debugger fail to come up to a prompt, the last
code displayed will indicate how far the initialization sequence had
progressed before stalling. The codes are enabled by an ENV parameter:

Serial Startup Code Master Enable [Y/N]=N?

A line feed can be inserted after each code is displayed to prevent it from
being overwritten by the next code. This is also enabled by an ENV
parameter:

3-58 Embedded Communications Computing Web Site

Debugger Commands

3

Serial Startup Code LF Enable [Y/N]=N?

The list of LED/serial codes is included in the section on MPU, Hardware,
and Firmware Initialization in Chapter 1.

Memory Usage Control

The amount of RAM that PPCBug uses may be contained with an
NVRAM parameter. This parameter is set by the ENV line:

Maximum Memory Usage (Mb, 0=AUTO) = 1?

If the parameter is set to a non-zero value, it is interpreted as the maximum
number of megabytes that PPCBug is allowed to control. At start-up, one
megabyte at the top of physical memory is set aside. If more than this is
required, allocation is expanded toward smaller addresses unless the
specified maximum value is achieved. If this occurs, the current memory
request will be denied followed, most likely, by failure of the current
activity.

If the parameter is set to zero, expansion is unlimited.

In no case, however, is expansion allowed to exceed one-half of the
available memory regardless of how high the parameter is set.

Two things should be considered in setting this parameter:

1. Memory, once acquired, is never returned. The total memory used
sets the system’s maximum use level. This number may be obtained
using the Memory Manager Query command (MMGR).

2. Expansion is incremental and on demand. Only what is actually
required will be used.

Thus, the total used is the system’s current maximum usage level gauge.
This number may be obtained, after the system has exercised, using the
Memory Manager Query command (MMGR).

Debugger Commands

http://www.motorola.com/computer/literature 3-59

3

FORK - Fork Idle MPU at Address

Note This command is for multi-processor boards only.

Command Input

FORK MPU# ADDR

Description

The FORK command allows you to fork an idle processor to target code
that is pointed to by the ADDR argument. The MPU# argument depends
on your configuration and idle processors present. It is the target code’s
responsibility to load the processor’s registers. Once a processor is forked,
the only means back to the idle state would be by execution of the system
call .IDLEMPU. Refer to the System Calls chapter in this manual for the
description of the system call.

To inquire of the BUG about idle processors, refer to the RUN command.

Example

Fork processor #1 to address $10000.

PPC1-Bug>fork 1 10000
PPC1-Bug>

3-60 Embedded Communications Computing Web Site

Debugger Commands

3

FORKWR - Fork Idle MPU with Registers

Note This command is for multi-processor boards only.

Command Input

FORKWR MPU#

Description

The FORKWR command allows you to fork an idle processor to target
code. The associated register set is loaded before execution. The MPU#
argument depends on your configuration and idle processors present.

The idle processor’s registers can be examined/modified by the commands
IRD, IRM, and IRS. Once a processor is forked, the only means back to
the idle state would be by execution of the
system call .IDLEMPU. Refer to the System Calls chapter in this manual
for the description of the system call.

To inquire of the BUG about idle processors, refer to the RUN command.

Example

Fork processor #1.

PPC1-Bug>forkwr 1
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-61

3

GD - Go Direct (Ignore Breakpoints)

Command Input

GD [ADDR]

Description

The GD command starts target code execution. If an address is specified,
it is placed in the target IP. Execution starts at the target IP address. Unlike
GO, breakpoints are not inserted.

Once execution of the target code has begun, control may be returned to
the debugger by one of the following conditions:

❏ The abort or reset switch on the debugger host was pressed.

❏ An unexpected exception occurred.

Example

The following program resides at $20000.

PPC1-Bug>DS 20000:10 <Return>
00020000 3C600004 ADDIS R3,R0,$4
00020004 60631000 ORI R3,R3,$1000
00020008 7C641B78 OR R4,R3,R3
0002000C 3CA00005 ADDIS R5,R0,$5
00020010 60A51000 ORI R5,R5,$1000
00020014 3CC00000 ADDIS R6,R0,$0
00020018 90C40000 STW R6,$0(R4) ($00041000)
0002001C 38840004 ADDI R4,R4,$4
00020020 7F042840 CMPL CRF6,0,R4,R5
00020024 409AFFF4 BC 4,26,$00020018
00020028 38C60001 ADDI R6,R6,$1
0002002C 38E7FFFF ADDI R7,R7,$FFFFFFFF
00020030 7C641B78 OR R4,R3,R3
00020034 2B070000 CMPLI CRF6,0,R7,$0
00020038 409AFFE0 BC 4,26,$00020018
0002003C 00000000 WORD $00000000
PPC1-Bug>

Set breakpoint at $20028.

3-62 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>BR 20028 <Return>
BREAKPOINTS
00020028
PPC1-Bug>

Initialize R7 and start target the program.

PPC1-Bug>RM R7 <Return>
R7 =00000000 ? FFFFFFFF. <Return>
PPC1-Bug>

PPC1-Bug>GD 20000 <Return>
Effective address: 00020000

To exit target code, press the abort switch. Note that the breakpoint was not
taken.

Exception: System Reset (Soft)
SRR0 =00020020 SRR1 =00003030 Vector-Offset =00100
IP =00020020 MSR =00003030 CR =00000080 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =10000001 R3 =00041000
R4 =000410F4 R5 =00051000 R6 =00009A46 R7 =FFFF65B9
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00000000 SPR9 =00000000
00020020 7F042840 CMPL CRF6,0,R4,R5
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-63

3

GEVBOOT - Global Environment Variable Boot

Command Input

GEVBOOT Variable-Name

Description

The GEVBOOT command permits the user to boot the system using a
Global Environment Variable, Variable-Name, which is a “fw-boot-path”.

Background: Residual Data and Boot List

Recent releases of IBM AIX requires that the PReP style of residual data
be provided by the system firmware. Previous releases of IBM's AIX did
not require that residual data be implemented.

Residual data, basically, informs the operating system of the system
attributes (i.e., what devices are present, how are they configured, are they
bootable?, etc.). To some degree, it is an abstraction of the hardware that
the system firmware provides.

IBM has further defined what residual data should look like now.

This latest version of IBM AIX also requires that the system firmware
must support a boot list. This boot list contains a list of bootable devices
that the firmware utilizes to boot the system. This boot list is housed within
a Global Environment Variable (GEV). The GEVs are kept in the PReP
partition of NVRAM, more specifically, the global environment variable
area. Through this GEV, the OS/user can configure the system for its boot
device selection policy.

This latest version of IBM AIX also requires that the system firmware
support the PReP style of network booting. The PReP style of network
boot treats the network boot image the same as a mass storage (e.g., hard
disk, floppy) boot image. The network boot feature facilitates AIX
network install manager (NIM) feature.

3-64 Embedded Communications Computing Web Site

Debugger Commands

3

Requirements

Some high-level requirements that this release meets are:

❏ Residual Data as specified above.

❏ Boot List Support via "fw-boot-path", "fw-boot-device", and "boot-
file" global environment variables

❏ Network Boot, PReP style

❏ OEM Banner support

❏ Initialization of the PIRQx (PCI Interrupts) route control
registers.

❏ System uniqueness (i.e., board serial number)

The "boot list" and "OEM banner support" requirements require that the
firmware be capable of reading and writing global environment variables.
These variables are housed within the global environment area of NVRAM
(i.e., the PReP partition).

Each mass storage device, and network interface supported from the
firmware must identify itself. This identification is per the firmware device
naming convention, as outlined in the IBM document. The device naming
convention follows the Open Firmware device naming convention. The
GE variables, "fw-boot-path" and "fw-boot-device", consist of device
names.

Global Environment Variables (GEVs)

The product supports the following GEVs:

❏ MOT-OEM-BANNER
This variable is used by the firmware to display the OEM banner (if
initialized). The contents of this GEV are displayed prior to the
display of the firmware copyright message.

❏ MOT-OEM-ID
This variable is used by the firmware to apply any special switches,
product variations, other alterations as needed.

Debugger Commands

http://www.motorola.com/computer/literature 3-65

3

❏ fw-boot-path
This variable contains a list (four maximum) of boot devices which
can be booted from. The OS maintains this variable. This is a read-
only variable from the firmware’s perspective. (The firmware does
not impose any limit upon the length of this list.) However, this
variable may be modified by utilizing the GEVEDIT command.

❏ fw-boot-device
This variable contains the boot device path from the current boot
device (i.e., the device just booted from, mass storage or network).
This variable is updated on each successful boot (i.e., IPL loaded).

❏ ClientIPAddr
This variable is updated on each successful network boot. It
contains the client’s internet protocol address.

❏ ServerIPAddr
This variable is updated on each successful network boot. It
contains the server’s internet protocol address.

❏ GatewayIPAddr
This variable is updated on each successful network boot.It contains
the gateway internet protocol address to the server.

❏ NetMask
This variable is updated on each successful network boot. It
contains the internet protocol address mask. The mask is applied to
both the server’s and client’s IP address to determine if the gateway
must be used.

❏ boot-file
This variable is updated on each successful network boot. It
contains the name of the boot file.

3-66 Embedded Communications Computing Web Site

Debugger Commands

3

Styles of Booting

The older Motorola mode of mass storage device booting was also
preserved for backward compatibility. However, priority is given to the
new style of booting (i.e., NVRAM boot list).

The older product supports booting from the network. However, it does not
support it as per the PReP specification. The PReP specification specifies
the boot image from a mass storage device to be the same when booting
from a network interface. The older support treats the network boot image
as a raw binary, no format understood. The new support understands the
PReP boot image. The PReP boot image does have a defined format. The
network boot image may be loaded any where in memory, as per the PReP
specification.

Support has been added to the product to enable the PReP style of
networking booting. The former style is also preserved for backward
compatibility. However, priority is given to the new style of network
booting. This capability is in the form of a new ENV parameter.

Both styles of network booting are supported. The new style of networking
booting (i.e., PReP) is controlled by an ENV configuration parameter. The
default state of the ENV configuration parameter is set to enable the PReP
style of network booting. Disabling this parameter will effectively default
the network boot process to the past mode of network booting (i.e., no file
format understood). This support is identified by the following ENV
parameter:

Network PReP-Boot Mode Enable [Y/N], defaults to ’Y’

PPC1Bug revision 1.8 added a new global environment variable (GEV)
"fw-boot-path" boot to the global firmware boot process. The boot priority,
for both mass storage device boot and network interface boot, is given first
to the "fw-boot-path" GEV.

To support this, a new boot process has been added. This boot process is
labeled "NVRAM Boot List" boot.This new boot process is identified by
the ENV command parameters of:

NVRAM Boot List (GEV.fw-boot-path) Boot Enable [Y/N], defaults to ’Y’
NVRAM Boot List (GEV.fw-boot-path) Boot at power-up only [Y/N], defaults to ’N’
NVRAM Boot List (GEV.fw-boot-path) Boot Abort Delay, defaults to 5

Debugger Commands

http://www.motorola.com/computer/literature 3-67

3

The default state of the ENV configuration parameter is set to ’Y’ for
yes/enabled. This gives boot priority to the devices listed within the "fw-
boot-path" GEV. Setting this ENV configuration parameter to ’N’ for
no/disabled, effectively changes the behavior of boot policy to the same
behavior as prior products. If the "fw-boot-path" GEV is not initialized,
this also effectively has the same behavior as prior products.

This new boot takes priority over all other boots (i.e., Auto Boot, Network
Boot). This boot may also be executed manually from the firmware
command line via the GEVBOOT command.

The following global environment variables are updated upon each
successful network boot: fw-boot-device, ClientIPAddr, ServerIPAddr,
GatewayIPAddr, NetMask, and boot-file.

The "fw-boot-device" GEV is updated upon each boot instance. This is
done regardless of the specified boot policy. Both the mass storage device
boot module, and the network interface boot module are modified to set the
GEV at every successful boot instance.

The "fw-boot-path" GEV is a list (a maximum of four) of "fw-boot-device"
GEVs. Boot priority is always given to the first device in the list.

Example

Show storage devices via ioi

PPC1-Bug>ioi;d
I/O Inquiry Status:
CLUN DLUN CNTRL-TYPE DADDR DTYPE RM Inquiry-Data
 1 0 PC8477 0 $00 Y <None>
Device-Name =/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0

3-68 Embedded Communications Computing Web Site

Debugger Commands

3

fw-boot-path needs to be defined as a device that was shown to be
available via ioi

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
fw-boot-path=/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0
Total Number of GE Variables =7, Bytes Utilized =313, Bytes Free =1999

gevboot automatically uses fw-boot-device -- in this example it fails
because there is no floppy in the drive with a bootable image

PPC1-Bug>gevboot

NVRAM Boot List about to Begin... Press <ESC> to Bypass, <SPC> to Continue
Scanning System for Attached Boot Devices
/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0
/pci@80000000/pci1011,9@e,0:0,0

Attempting BOOT from Devices Specified by the GE Variable “fw-boot-path”
/pci@80000000/pci8086,484@b,0/PNP0700@3f0/floppy@0
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-69

3

GEVDEL - Global Environment Variable Delete

Command Input

GEVDEL Variable-Name

Description

The GEVDEL command permits the user to selectively delete a Global
Environment Variable, Variable-Name.

Example

PPC1-Bug>gevdel testvar
testvar=12345

Update Global Environment Area of NVRAM (Y/N)? y
PPC1-Bug>

Show that the variable is deleted

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
Total Number of GE Variables =6, Bytes Utilized =184, Bytes Free =2128
PPC1-Bug>

3-70 Embedded Communications Computing Web Site

Debugger Commands

3

GEVDUMP - Global Environment Variable(s) Dump

Command Input

GEVDUMP

Description

The GEVDUMP command permits the user to dump to the console, in a
hexadecimal/ASCII fashion, the contents of NVRAM (i.e., the PReP
partition). These contents include the NVRAM Header + Data.

Example

PPC1-Bug>gevdump

01F8B000 00 04 01 02 07 E8 59 C3 02 00 01 00 00 00 00 00Y.........
01F8B010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B0A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B0B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B0C0 00 00 00 00 00 00 00 F8 00 00 09 08 00 00 00 00
01F8B0D0 00 00 00 00 00 00 0C 00 00 00 04 00 00 00 00 00
01F8B0E0 00 00 00 00 00 00 00 00 00 00 0A 00 00 00 02 00
01F8B0F0 19 94 01 04 21 27 48 00 66 77 2D 62 6F 6F 74 2D!’H.fw-boot-

Debugger Commands

http://www.motorola.com/computer/literature 3-71

3

01F8B100 64 65 76 69 63 65 3D 2F 70 63 69 40 38 30 30 30 device=/pci@8000
01F8B110 30 30 30 30 2F 70 63 69 31 30 31 31 2C 39 40 65 0000/pci1011,9@e
01F8B120 2C 30 3A 30 2C 30 00 43 6C 69 65 6E 74 49 50 41 ,0:0,0.ClientIPA
01F8B130 64 64 72 3D 31 34 34 2E 31 39 31 2E 32 34 2E 31 ddr=144.191.24.1
01F8B140 32 31 00 53 65 72 76 65 72 49 50 41 64 64 72 3D 21.ServerIPAddr=
01F8B150 31 34 34 2E 31 39 31 2E 32 34 2E 32 35 32 00 47 144.191.24.252.G
01F8B160 61 74 65 77 61 79 49 50 41 64 64 72 3D 31 34 34 atewayIPAddr=144
01F8B170 2E 31 39 31 2E 31 32 2E 32 35 32 00 4E 65 74 4D .191.12.252.NetM
01F8B180 61 73 6B 3D 32 35 35 2E 32 35 35 2E 32 35 35 2E ask=255.255.255.
01F8B190 30 00 62 6F 6F 74 2D 66 69 6C 65 3D 2F 75 73 72 0.boot-file=/usr
01F8B1A0 2F 74 6D 70 2F 6A 64 63 68 61 6D 2E 72 61 6D 00 /tmp/jdcham.ram.
01F8B1B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B1C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B1D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B1E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8B1F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

:

More stuff in between

:

01F8BF00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF70 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BF90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BFA0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BFB0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BFC0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BFD0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BFE0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01F8BFF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

PPC1-Bug>

3-72 Embedded Communications Computing Web Site

Debugger Commands

3

GEVEDIT - Global Environment Variable Edit

Command Input

GEVEDIT Variable-Name

Description

The GEVEDIT command permits the user to selectively edit a Global
Environment Variable, Variable-Name.

This writing of new, or modification of existing, global environment
variables, is available from the command line (i.e., on demand), or at any
time within the product (i.e., a function call).

Example

PPC1-Bug>gevedit testvar
testvar=12345

Update Global Environment Area of NVRAM (Y/N)? y
PPC1-Bug>

Show the new variable

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
testvar=12345
Total Number of GE Variables =7, Bytes Utilized =196, Bytes Free =2116
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-73

3

GEVINIT - Global Environment Variable Initialization

Command Input

GEVINIT

Description

The GEVINIT command permits the user to initialize the NVRAM
Header (i.e., the PReP partition) information.

Initialization of the NVRAM PReP partition is available from the
command line (i.e., on demand), or at any time when the system’s firmware
initializes itself (i.e., buginit()).

The auto initializing of the NVRAM (PReP partition) header, is controlled
by an ENV configuration parameter. The default state of this parameter is
set to enabled. The following is the ENV parameter syntax:

Auto-Initialize of NVRAM Header Enable [Y/N], defaults to ’Y’

If you answer Y, it will initialize the header; if you answer N, it won’t.

Examples

GEVINIT example with (yes) for update

PPC1-Bug>gevinit

Update Global Environment Area of NVRAM (Y/N)? y
PPC1-Bug>

GEVINIT example with (no) for update

PPC1-Bug>gevinit

Update Global Environment Area of NVRAM (Y/N)? n
PPC1-Bug>

3-74 Embedded Communications Computing Web Site

Debugger Commands

3

GEVSHOW - Global Environment Variable(s) Display

Command Input

GEVSHOW [string]

Description

The GEVSHOW command permits the user to selectively display the
contents of a currently configured global environment variable (by typing
string, where string is the name of a variable), or to display all currently
configured global environment variables.

Reading of global environment variables (GEV read) is available from the
command line (i.e., on demand), or at any time within the product (i.e., a
function call).

Example

PPC1-Bug>gevshow
fw-boot-device=/pci@80000000/pci1011,9@e,0:0,0
ClientIPAddr=144.191.24.121
ServerIPAddr=144.191.24.252
GatewayIPAddr=144.191.12.252
NetMask=255.255.255.0
boot-file=/usr/tmp/jdcham.ram
Total Number of GE Variables =6, Bytes Utilized =184, Bytes Free =2128
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-75

3

GN - Go to Next Instruction

Command Input

GN

Command Input

The GN command sets a temporary breakpoint at the address of the next
instruction (the instruction that follows the current instruction), and starts
target code execution. After setting the temporary breakpoint, the
sequence of events is similar to that of the GO command.

GN is especially helpful when debugging modular code because it allows
you to trace through a subroutine call as if it were a single instruction.

Example

The following section of code resides at address $20000.

PPC1-Bug>DS 20000:6 <Return>
00020000 3C600004 ADDIS R3,R0,$4
00020004 60631000 ORI R3,R3,$1000
00020008 3C800000 ADDIS R4,R0,$0
0002000C 608400FE ORI R4,R4,$FE
00020010 4800FFF1 BL $00030000
00020014 80620000 LWZ R3,$0(R2) ($FFF0178C)
PPC1-Bug>

The following simple routine resides at address $30000.

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000 ADDIS R5,R0,$0
00030004 2B040000 CMPLI CRF6,0,R4,$0
00030008 419A0014 BC 12,26,$0003001C
0003000C 98A30000 STB R5,$0(R3) ($00000000)
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
00030014 38630001 ADDI R3,R3,$1
00030018 4BFFFFEC B $00030004
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

3-76 Embedded Communications Computing Web Site

Debugger Commands

3

Execute up to the BL instruction.

PPC1-Bug>RM IP <Return>
IP =00020020 ? 20000. <Return>
PPC1-Bug>

PPC1-Bug>GT 20010 <Return>
Effective address: 00020010
Effective address: 00020000
At Breakpoint
IP =00020010 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =000000FE R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00020010 4800FFF1 BL $00030000
PPC1-Bug>

Use the GN command to trace through the subroutine call and display the
results.

PPC1-Bug>GN <Return>
Effective address: 00020014
Effective address: 00020010
At Breakpoint
IP =00020014 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =000410FE
R4 =00000000 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00020014 80620000 LWZ R3,$0(R2) ($FFF0178C)
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-77

3

G, GO - Go Execute User Program

Command Input

G [ADDR], GO [ADDR]

Description

The G and GO command initiates target code execution. All previously set
breakpoints are enabled. If an address is specified, it is placed in the target
IP. Execution starts at the target IP address. The sequence of events is as
follows:

1. If an address is specified, it is loaded in the target IP.

2. If a breakpoint is set at the target IP address, the instruction at the
target IP is traced (executed in trace mode).

3. All breakpoints are inserted in the target code.

4. Target code execution resumes at the target IP address.

At this point control may be returned to the debugger by one of the
following conditions:

❏ A breakpoint with a count of 0 was found.

❏ The abort or reset switch on the debugger host was pressed.

❏ An unexpected exception occurred.

When you invoke G or GO, control may or may not return to the debugger,
depending on the outcome of the user program.

Example

The following program resides at $30000.

3-78 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000 ADDIS R5,R0,$0
00030004 2B040000 CMPLI CRF6,0,R4,$0
00030008 419A0014 BC 12,26,$0003001C
0003000C 98A30000 STB R5,$0(R3) ($000410FE)
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
00030014 38630001 ADDI R3,R3,$1
00030018 4BFFFFEC B $00030004
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

Initialize R3/R4, set some breakpoints, and start the target program.

PPC1-Bug>RM R3 <Return>
R3 =000410FE? 68000 <Return>
R4 =00000000? 34. <Return>
PPC1-Bug>

PPC1-Bug>BR 30018 3001C <Return>
BREAKPOINTS
00030018 0003001C
PPC1-Bug>

PPC1-Bug>GO 30000 <Return>
Effective address: 00030000
At Breakpoint
IP =00030018 MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00068001
R4 =00000033 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030018 4BFFFFEC B $00030004
PPC1-Bug>

Remove breakpoint at this location (* represents the current instruction
pointer).

PPC1-Bug>NOBR * <Return>
BREAKPOINTS
0003001C
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-79

3

Continue target program execution.

PPC1-Bug>G <Return>
Effective address: 00030018
At Breakpoint
IP =0003001C MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00068034
R4 =00000000 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

Remove breakpoints and restart the target code.

PPC1-Bug>NOBR <Return>
BREAKPOINTS
PPC1-Bug>

PPC1-Bug>GO 30000 <Return>
Effective address: 00030000

The outcome is dependent on the loaded application.

3-80 Embedded Communications Computing Web Site

Debugger Commands

3

GT - Go to Temporary Breakpoint

Command Input

GT ADDR

Command Input

The GT command sets a temporary breakpoint and starts target code
execution. A count may be specified with the temporary breakpoint.
Control is given at the target IP address. All previously set breakpoints are
enabled. The temporary breakpoint is removed when any breakpoint with
a count of 0 is encountered.

After setting the temporary breakpoint, the sequence of events is similar to
that of the GO command. At this point control may be returned to the
debugger by one of the following conditions:

❏ A breakpoint with a count of 0 was found.

❏ The abort or reset switch on the debugger host was pressed.

❏ An unexpected exception occurred.

Example

The following program resides at $20000 and $30000.

PPC1-Bug>DS 20000:7 <Return>
00020000 3C600004 ADDIS R3,R0,$4
00020004 60631000 ORI R3,R3,$1000
00020008 3C800000 ADDIS R4,R0,$0
0002000C 608400FE ORI R4,R4,$FE
00020010 4800FFF1 BL $00030000
00020014 80620000 LWZ R3,$0(R2) ($FFF0178C)
00020018 4BFFFFE8 B $00020000
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-81

3

PPC1-Bug>DS 30000:8 <Return>
00030000 3CA00000 ADDIS R5,R0,$0
00030004 2B040000 CMPLI CRF6,0,R4,$0
00030008 419A0014 BC 12,26,$0003001C
0003000C 98A30000 STB R5,$0(R3) ($00041004)
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
00030014 38630001 ADDI R3,R3,$1
00030018 4BFFFFEC B $00030004
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

Set a breakpoint.

PPC1-Bug>BR 20014 <Return>
BREAKPOINTS
00020014
PPC1-Bug>

Set IP to start of program, set temporary breakpoint, and start target code.

PPC1-Bug>RM IP <Return>
IP =00020010 ? 20000. <Return>
PPC1-Bug>

PPC1-Bug>GT 20010 <Return>
Effective address: 00020010
Effective address: 00020000
At Breakpoint
IP =00020010 MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =000000FE R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00020010 4800FFF1 BL $00030000
PPC1-Bug>

3-82 Embedded Communications Computing Web Site

Debugger Commands

3

Set another temporary breakpoint at $20000 and continue the target
program execution.

PPC1-Bug>GT 20000 <Return>
Effective address: 00020000
Effective address: 00020010
At Breakpoint
IP =00020014 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =000410FE
R4 =00000000 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00020014 80620000 LWZ R3,$0(R2) ($FFF0178C)
PPC1-Bug>

Note that a breakpoint from the breakpoint table was encountered before
the temporary breakpoint.

Debugger Commands

http://www.motorola.com/computer/literature 3-83

3

HE - Help

Command Input

HE [COMMAND]

Description

The HE command displays information about the debugger commands.

HE displays the description and the syntax of the command specified in
the COMMAND argument.

Without the COMMAND argument, HE displays a list of the debugger
commands and their descriptions.

Examples

Example 1:

PPC1-Bug>HE MD <Return>
Memory Display:
MD[S] <ADDR>[:<COUNT>|<ADDR>][;[B|H|W|S|D][DI]]
PPC1-Bug>

Example 2:

PPC1-Bug>HE <Return>
AS Assembler
BC Block of Memory Compare
BF Block of Memory Fill
BI Block of Memory Initialize
BM Block of Memory Move
BR Breakpoint Insert
BS Block of Memory Search
BV Block of Memory Verify
CM Concurrent Mode
CNFG Configure Board Information Block
CS Checksum a Block of Data
CSAR PCI Configuration Space READ Access
CSAW PCI Configuration Space WRITE Access
DC Data Conversion and Expression Evaluation
DMA Move Block of Memory
DS Disassembler
DU Dump S-Records
ECHO Echo String

3-84 Embedded Communications Computing Web Site

Debugger Commands

3

ENV Set Environment to Bug/Operating System
FORK Fork Idle MPU at Address
FORKWR Fork Idle MPU with Registers
G "Alias" for "GO" Command
GD Go Direct (Ignore Breakpoints)
GEVBOOT Global Environment Variable Boot
GEVDEL Global Environment Variable Delete
GEVDUMP Global Environment Variable(s) Dump
Press "RETURN" to continue
GEVEDIT Global Environment Variable Edit
GEVINIT Global Environment Variable Initialization
GEVSHOW Global Environment Variable(s) Display
GN Go to Next Instruction
GO Go Execute User Program
GT Go to Temporary Breakpoint
HE Help on Command(s)
IDLE Idle Master MPU
IOC I/O Control for Disk
IOI I/O Inquiry
IOP I/O Physical to Disk
IOT I/O "Teach" for Configuring Disk Controller
IRD Idle MPU Register Display
IRM Idle MPU Register Modify
IRS Idle MPU Register Set
LO Load S-Records from Host
M "Alias" for "MM" Command
MA Macro Define/Display
MAE Macro Edit
MAL Enable Macro Expansion Listing
MAR Macro Load
MAW Macro Save
MD Memory Display
MDS Memory Display
MENU System Menu
MM Memory Modify
Press "RETURN" to continue
MMD Memory Map Diagnostic
MS Memory Set
MW Memory Write
NAB Network Automatic Bootstrap Operating System
NAP Nap MPU
NBH Network Bootstrap Operating System and Halt
NBO Network Bootstrap Operating System
NIOC Network I/O Control
NIOP Network I/O Physical
NIOT I/O "Teach" for Configuring Network Controller

Debugger Commands

http://www.motorola.com/computer/literature 3-85

3

NOBR Breakpoint Delete
NOCM No Concurrent Mode
NOMA Macro Delete
NOMAL Disable Macro Expansion Listing
NOPA Printer Detach
NOPF Port Detach
NORB No ROM Boot
NOSYM Detach Symbol Table
NPING Network Ping
OF Offset Registers Display/Modify
PA Printer Attach
PBOOT Bootstrap Operating System
PF Port Format
Press "RETURN" to continue
PFLASH Program FLASH Memory
PS Put RTC Into Power Save Mode for Storage
RB ROM Bootstrap Operating System
RD Register Display
REMOTE Connect the Remote Modem to CSO
RESET Cold/Warm Reset
RL Read Loop
RM Register Modify
RS Register Set
RUN MPU Execution/Status
SD Switch Directories
SET Set Time and Date
SROM SROM Examine/Modify
SYM Attach Symbol Table
SYMS Display Symbol Table
T Trace
TA Terminal Attach
TIME Display Time and Date
TM Transparent Mode
TT Trace to Temporary Breakpoint
VE Verify S-Records Against Memory
VER Revision/Version Display
WL Write Loop
PPC1-Bug>

3-86 Embedded Communications Computing Web Site

Debugger Commands

3

IBM - Indirect Block Move

Command Input

IBM <ADDR>[<RANGE>];<D|E|I|N|P>[R|W]

Description

The <ADDR> parameter specifies the buffer address in linear memory
space that will either be the source or the destination of the block copy.

The optional <RANGE> parameter specifies the indirect memory space
start address and the block length. The entire indirect memory space will
be copied if this parameter is not specified.

The <D|E|I|N|P> parameter specifies one of several indirect memory
spaces. The D (Drawbridge SROM), E (Ethernet SROM), I (I2C SROM),
and P (PCI configuration space) selections will probe for compatible
devices and prompt the user to confirm the device instance as each instance
is located. The N (NVRAM) selection only supports one NVRAM device
and will not prompt the user to confirm the device instance.

The optional [R|W] parameter specifies the copy direction. R (read) copies
a block of data from indirect memory space to linear memory space and W
(write) prompts the user for confirmation and then copies a block of data
from linear memory space to indirect memory space. The R direction will
be used if this parameter is not specified.

Refer to example on next page.

Debugger Commands

http://www.motorola.com/computer/literature 3-87

3

Example

PPC4-Bug>ibm 200000;i

Device Address =$A0 (N/Y)? y
Source = I2C SROM (A0:0) 0000 - 00FF
Destination = RAM 00200000 - 002000FF
Size = 100 (&256) bytes
PPC4-Bug>md 200000:40
00200000 4D4F544F 524F4C41 0100010A 4D564D45 MOTOROLA....MVME
00200010 32343331 2D31020C 30312D57 33333934 2431-1..01-W3394
00200020 46303142 03073333 38333138 350410C0 F01B..3383185
00200030 00808000 BA000000 00000000 00000005
00200040 0414DC93 80060405 F5E10009 03373530750
00200050 0A04FF41 04C90B0C 000122C4 10040220 ...A...”.......
00200060 20005005 0B0CFFFF FFFF0802 02080801 .P.............
00200070 78020E0F FFFFFFFF 20020220 00000001 x.....
00200080 0201040D 0401FCA0 550F0400 020000FFU........
00200090 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
002000A0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
002000B0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
002000C0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
002000D0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
002000E0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
002000F0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
PPC4-Bug>

3-88 Embedded Communications Computing Web Site

Debugger Commands

3

IDLE - Idle Master MPU

Note This command is for multi-processor boards only.

Command Input

IDLE

Description

The IDLE command allows you to idle the current processor. Care should
be taken not to idle it when all other processors are idle. The only way to
correct this problem is by an MPU reset.

To inquire of the BUG about idle processors, refer to the RUN command.

Example

Idle current processor.

PPC1-Bug>idle
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-89

3

IOC - I/O Control for Disk

Command Input

IOC

Description

The IOC command sends command packets directly to a disk controller.
The packet to be sent must already reside in memory and must follow the
packet protocol of the particular disk controller. This packet protocol is
outlined in the documentation for the SCSI controller (refer to Appendix
A, Related Documentation).

This command may be used as a debugging tool to issue commands to the
disk controller to locate problems with either drives, media, or the
controller itself.

When invoked, this command prompts for the controller and drive
required. The default controller LUN (CLUN) and device LUN (DLUN)
when IOC is invoked are those most recently specified for IOP, IOT, or
a previous invocation of IOC. The command also prompts for an address
where the controller command is located. You may change the displayed
value by typing a new value, followed by the Return key. To leave the field
unaltered, press the Return key without typing a new value.

3-90 Embedded Communications Computing Web Site

Debugger Commands

3

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

The power-up default for the packet address is the area which is also used
by the PBOOT and IOP commands for building packets. IOC displays the
command packet, and if you so instruct it, sends the packet to the disk
controller, following the proper protocol required by the particular
controller.

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via IOC.

The device probe mechanism utilizes the SCSI commands Inquiry and
Mode Sense. If the specified controller is non-SCSI, the probe simply
returns a status of device present and unknown. The device probe
makes an entry into the device descriptor table with the pertinent data.
After an entry has been made, the next time a probe is done it simply
returns with device present status (pointer to the device descriptor).

V or v Go to the next field. This is the default, and remains in
effect until changed by entering one of the other special
characters.

^ Back up to the previous field. This remains in effect until
changed by entering one of the other special characters.

= Re-open the same field

. Terminate the IOC command, and return control to the
debugger

Debugger Commands

http://www.motorola.com/computer/literature 3-91

3

Example

Send the packet at $10000 to a controller device configured as CLUN #0.
Specify an operation to the hard disk which is at DLUN #1.

PPC1-Bug>IOC <Return>
Controller LUN =00? <Return>
Device LUN =00? 1 <Return>
Packet address =000012BC? 10000 <Return>
00700074 0000 0000 8004 000E 0000 0000 0000 0000
00700084 0000 0006 1200 0000 2400 0000 0000 0000 $.......
00700094 0000 0000 0000 0000 0000 0000 0000 0000
007000A4 0000 0000 0000 0000 0000 0000 0000 0000
007000B4 0000 0000 0000 0000 0000 0024 0040 0000 $.@..
007000C4 0000 0000 0000 0000 0000 0000 0018 AFC8
007000D4 0000 0000 0000 0000 0000 0000 0000 0000
007000E4 0000 0000 0000 0000 0000 0000 0000 0000
Send Packet=Y (Y/N)? y
PPC1-Bug>

3-92 Embedded Communications Computing Web Site

Debugger Commands

3

IOI - I/O Inquiry

Command Input

IOI [;[C|D|L|N]]

Options

Description

The IOI command inquires for all of the possible attached devices. If no
option is specified, this command probes the system for all possible
CLUN/DLUN combinations. Both the CLUN and DLUN parameters have
the range of 0 to 255 (decimal).

If the probed device supports an inquiry operation (SCSI devices), the
command will display the inquiry data along with the CLUN, DLUN,
controller type, device address, device type, and the removable media
attribute. If a device does not support inquiry data, the message <None>
will be displayed.

The probe ordering starts with a CLUN of zero and a DLUN of zero. Once
the probe is done, the DLUN is incremented by one and the probe is
executed again, the incrementing of the DLUN and the probing continues
until the DLUN reaches 256. At this point the CLUN is incremented by
one and the DLUN is set to zero, the probing of DLUNs from zero to 255
is performed. The probing continues until the CLUN reaches 256.

When the ENV option “Serial Startup Code Master Enable” is set to ‘Y’,
the CLUN/DLUN numbers are displayed on the console as the probe
occurs.

The CLUN/DLUN numbers in this case are shown on the screen as:

[mmnn]

C Clear the Device Descriptor Table.

D List Devices while probing

L List the Device Descriptor Table.

N List the Devices currently configured

Debugger Commands

http://www.motorola.com/computer/literature 3-93

3

where: mm = the CLUN number and

while: nn = the DLUN number

The CLUN/DLUN numbers are always sent to the 7-segment LEDs
regardless of the ENV setting.

With the variable number of devices that can now be attached to a given
system, the memory requirements to house the pertinent device descriptors
cannot be met. The debugger reserves space for 16 device descriptors. The
device descriptor table (16 entries) can be viewed or cleared by this
command with the L and C options, respectively.

Each mass storage boot device and network interface boot device is
identified by a device name. Each device type that the product supports is
contained/listed within device probe tables. These tables are modified to
contain the associative device name.

At probe time, the probed device’s name is copied into the dynamic device
configuration tables housed within NVRAM. This will only be done, of
course, if the device is present. The user may view the system’s device
names by performing the following operations.

For mass storage devices while probing, the D option allows users to
display the device names of the attached devices. These device names are
per the IBM firmware and the IBM AIX naming conventions.

To view the device names of mass storage devices which are currently
configured (or have been accessed via a boot (PBOOT), or via an I/O
operation (IOP)), use the N option.

Examples

Example 1: Probe for all possible devices. As a device is found (probe was
successful) it is displayed to the console with the associative inquiry data.

PPC1-Bug>IOI <Return>
I/O Inquiry Status:
CLUN DLUN CNTRL-TYPE DADDR DTYPE RM Inquiry-Data

0 0 NCR53C825 0 $00 N SEAGATE ST31200N 8630
0 30 NCR53C825 3 $05 Y TOSHIBA CD-ROM XM-3401TA 1094
1 0 PC8477 0 $00 Y <None>

PPC1-Bug>

3-94 Embedded Communications Computing Web Site

Debugger Commands

3

Note that if the board has a secondary SCSI, and both primary and
secondary SCSI controllers are connected with the same SCSI cable, all
SCSI peripherals will be listed twice by IOI because they can be accessed
by either primary or secondary SCSI controller:

PPC1-Bug>IOI <Return>
I/O Inquiry Status:
CLUN DLUN CNTRL-TYPE DADDR DTYPE RM Inquiry-Data

0 10 NCR53C825 1 $00 N SEAGATE ST11200N ST31230 0660
0 30 NCR53C825 3 $05 Y TOSHIBA CD-ROM XM-5301TA 0925
1 0 PC8477 0 $00 Y <None>
12 10 NCR53C825 1 $00 N SEAGATE ST11200N ST31230 0660
12 30 NCR53C825 3 $05 Y TOSHIBA CD-ROM XM-5301TA 0925

PPC1-Bug>

Example 2: List (view) the current device descriptors as found in the
device descriptor table.

PPC1-Bug>IOI;L <Return>

I/O Inquiry Device Descriptor Table Status:
CLUN DLUN CNTRL-TYPE CNTRL-Address RM Device-Type
0 30 VME??? $FFF47000 N $00/Direct-Access
2 30 VME327 $FFFFA600 Y $01/Sequential-Access
PPC1-Bug>

Example 3: Clear the device descriptor table.

PPC1-Bug>IOI;C <Return>
PPC1-Bug>

This option is useful in the event the table becomes full and a device that
has not been accessed is accessed.

Debugger Commands

http://www.motorola.com/computer/literature 3-95

3

IOP - I/O Physical (Direct Disk Access)

Command Input

IOP

Description

The IOP command allows you to read, write, or format any of the
supported disk or tape devices.

When invoked, this command goes into an interactive mode, prompting
you for all the parameters necessary to carry out the command. You may
change the displayed value by typing a new value, followed by the Return
key. To leave the field unchanged, press the Return key without typing a
new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

The disk SYSCALL functions (trap routines) are used by IOP to access the
specified disk or tape (refer to Chapter 5, System Calls).

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via IOP.

The device probe mechanism utilizes the SCSI Inquiry and Mode Sense
commands (SCSI devices) or ATA Identify Data and Initialize Device
Parameters commands (ATA devices). ATAPI devices are queried only
for their inquiry data. If the specified controller is non-SCSI or non-
ATA/ATAPI, the probe simply returns the message device present
and unknown. The device probe makes an entry into the device

V or v Open the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous field

= Re-open the same field

. Terminate the IOP command, and return control to the
debugger

3-96 Embedded Communications Computing Web Site

Debugger Commands

3

descriptor table with the pertinent data. After an entry has been made, the
next time a probe is done it simply returns with the message device
present (pointer to the device descriptor).

Initially (after a cold reset), all the parameters used by IOP are set to
certain default values. However, any new values entered are saved and are
displayed the next time that the IOP command is invoked.

The following prompts appear (some prompts are device-dependent):

Controller LUN =00?

The Logical Unit Number (LUN) of the controller to access

Device LUN =00?

The LUN of the device to access

Read/Write/Format =R?

The command function:

Memory Address =00003000?

The starting address for the memory block to be accessed. For disk
read operations, data is written starting at this location. For disk write
operations, data is read starting at this location.

R Read blocks of data from the selected device into memory

W Writes blocks of data from memory to the selected device

F

!
Caution

Formats the selected device;

If you start the IOP format procedure, it must be allowed to complete
(PPC1Bug> prompt returns) or else the disk drive may be totally disabled.
This format procedure may take as long as half an hour.

For disk devices, either a track or the whole disk can be selected by a
subsequent field. This option only applies to SCSI Direct Access devices
(type $00). When the format operation is selected, the Flag Byte prompt
is displayed. A flag byte of $08 specifies to ignore the grown defect list
when formatting. A flag byte of $00 specifies not to ignore the grown
defect list when formatting.

Debugger Commands

http://www.motorola.com/computer/literature 3-97

3

Starting Block =00000000?

The starting disk block number to access. For disk read operations,
data is read starting at this block. For disk write operations, data is
written starting at this block. For disk track format operations, the
track that contains this block is formatted.

Number of Blocks =0002?

The number of data blocks to be transferred on a read or write
operation.

Address Modifier =00?

Note Changing this Address Modifier parameter works for the
MVME160x series modules only.

Track/Disk =T (T/D)?

File Number =0000?

The starting file number to access (for streaming tape devices)

T Format a disk track

D Format the entire disk

3-98 Embedded Communications Computing Web Site

Debugger Commands

3

Flag Byte =00?

The flag byte is used to specify variations of the same command, and
to receive special status information. Bits 0 through 3 are used as
command bits; bits 4 through 7 are used as status bits. The following
bits are defined for streaming tape read and write operations.

Retension/Erase =R (R/E)?

After all the required parameters are entered, the disk access is initiated. If
an error occurs, an error status word is displayed. Refer to Appendix F for
an explanation of any error status codes that are returned.

Bit 7 Filemark flag. If 1, a filemark was detected at the end of the
last operation.

Bit 3 Disk formatting. It is ignored on tape operations.

Bit 2 Reset Controller Flag. If 1, a controller reset will take place if
possible before the requested operation takes place.

Bit 1 Ignore File Number (IFN) flag. If 0, the file number field is
used to position the tape before any reads or writes are done. If
1, the file number field is ignored, and reads or writes start at
the present tape position.

Bit 0 End of File flag. If 0, reads or writes are done until the
specified block count is exhausted. If 1, reads are done until the
count is exhausted or until a filemark is found. If 1, writes are
terminated with a filemark.

R Retension tape when a format operation is scheduled

E Erase and retension tape when a format operation is
scheduled

Debugger Commands

http://www.motorola.com/computer/literature 3-99

3

Examples

Example 1: Read 25 blocks starting at block 370 from device 2 of
controller 0 into memory beginning at address $50000.

PPC1-Bug>IOP <Return>
Controller LUN =00? <Return>
Device LUN =00? 2 <Return>
Read/Write/Format=R? <Return>
Memory Address =00003000? 50000 <Return>
Starting Block =00000000? &370 <Return>
Number of Blocks =0002? &25 <Return>
Address Modifier =00? <Return>
PPC1-Bug>

Example 2: Write 14 blocks starting at memory location $7000 to file 6 of
device 0, controller 4. Append a filemark at the end of the file.

PPC1-Bug>IOP <Return>
Controller LUN =00? 4 <Return>
Device LUN =02? 0 <Return>
Read/Write/Format=R? W <Return>
Memory Address =00050000? 7000 <Return>
File Number =00000172? 6 <Return>
Number of Blocks =0019? E <Return>
Flag Byte =00? %01 <Return>
Address Modifier =00? <Return>
PPC1-Bug>

Example 3: Format the specified device with the option not to ignore the
grown defect list.

PPC1-Bug>IOP
Controller LUN =00? <Return>
Device LUN =00? <Return>
Read/Write/Format =R? F <Return>
Starting Block =00000000? <Return>
Track/Disk (T/D) =D? <Return>
Flag Byte =00? <Return>
Address Modifier =00? <Return>
PPC1-Bug>

3-100 Embedded Communications Computing Web Site

Debugger Commands

3

Example 4: Format the specified device with the option to ignore the
grown defect list.

PPC1-Bug>IOP
Controller LUN =00? <Return>
Device LUN =00? <Return>
Read/Write/Format =R? F <Return>
Starting Block =00000000? <Return>
Track/Disk (T/D) =D? <Return>
Flag Byte =00? 8 <Return>
Address Modifier =00? <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-101

3

IOT - I/O Configure Disk Controller

Command Input

IOT [;[A|F|H|T]]

Options

Description

The IOT command allows you to set-up (“teach”) a new disk
configuration in the PPCBug for use by the system call disk functions.
IOT lets you modify the controller and device descriptor tables used by the
system call functions for disk access. Note that because the PPCBug
commands that access the disk use the system call disk functions, changes
in the descriptor tables affect all those commands. These include the IOP
and PBOOT commands, and also any user program that uses the system
call disk functions.

Refer to Table E-2 for information on formatting floppy disk drives.

Before attempting to access the disks with the IOP command, you should
verify the parameters and, if necessary, modify them for the specific media
and drives used in the system. (Refer to Appendix E for details.)

Note that during a boot, the configuration sector is normally read from the
disk, and the device descriptor table for the LUN used is modified
accordingly. If you wish to read/write using IOP from a disk that has been
booted, IOT will not be required, unless the system is reset.

A List all the disk controllers which are supported by PPCBug. SCSI
controllers are identified with an asterisk (*). Each PCI controller is
only listed once.

F Force a device descriptor into the Device Descriptor Table. This option
makes it easier to debug a particular device, in the event the device
probe for the specified device fails.

H List all the disk controllers which are available to the system. SCSI
controllers are identified by an asterisk (*).

T Probe the system for I/O controllers. This option basically invokes the
IOI command with no options.

3-102 Embedded Communications Computing Web Site

Debugger Commands

3

A device probe with entry into the device descriptor table is done
whenever a specified device is accessed via IOT.

The device probe mechanism utilizes the SCSI commands Inquiry and
Mode Sense. If the specified controller is non-SCSI, the probe simply
returns the status device present and unknown. The device probe
makes an entry into the device descriptor table with the pertinent data.
After an entry has been made, the next time a probe is done it simply
returns with the status device present (pointer to the device
descriptor).

Note that reconfiguration is only necessary when you wish to read or write
a disk which is different than the default set by the IOP command.
Reconfiguration is normally done automatically by the PBOOT command
when booting from a disk which is different from the default.

When invoked without options, the IOT command enters an interactive
subcommand mode where the descriptor table values currently in effect are
displayed one-at-a-time. You may change the displayed value by typing a
new value, followed by the Return key. To leave the field unaltered, press
the Return key without typing a new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

All numerical values are interpreted as hexadecimal numbers. You may
enter decimal values by preceding the number with an &.

The following information prompts appear with the default field values
(some of the prompts are device-dependent):

Controller LUN =00?

The Controller LUN

V or v Open the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous field

= Re-open the same field

. Terminate the IOT command, and return control to the
debugger

Debugger Commands

http://www.motorola.com/computer/literature 3-103

3

Device LUN =00?

The Device LUN

If the Controller LUN and Device LUN selected do not correspond to
a valid controller and device, then IOT outputs the message Invalid
LUN and you are prompted for the two LUNs again.

Device Type [00-1F] =00?

Only the $00, $01, $05, and $07 are supported by the I/O controller
drivers.

Attribute Parameters

The parameters and attributes that are associated with a particular device
are determined by a parameter and an attribute mask that is a part of the
device definition. The device that has been selected may have any
combination of the following parameters and attributes:

Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)?

The number of data bytes per sector.

$00 Direct-access (e.g., magnetic disk)

$01 Sequential-access (e.g., magnetic tape)

$02 Printer

$03 Processor

$04 Write-once (e.g., some optical disks)

$05 CD-ROM

$06 Scanner

$07 Optical Memory (e.g., some optical disks)

$08 Medium Changer (e.g., jukeboxes)

$09 Communications

$0A, $0B Graphic Arts Pre-Press

$0C-$1E Reserved

$0F Unknown or no device type

3-104 Embedded Communications Computing Web Site

Debugger Commands

3

Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)?

The units in which a transfer count is specified when doing a disk/tape
block transfer. The block size can be smaller, equal to, or greater than
the physical sector size, as long as (Block Size) * (Number of Blocks) /
(Physical Sector Size) is an integer.

Sectors/Track =0020?

The number of data sectors per track, and is a function of the device
being accessed and the sector size specified.

Starting Head =10?

The starting head number for the device. It is normally zero for
Winchester and floppy drives. It is nonzero for dual volume SMD
drives.

Number of Heads =05?

The number of heads on the drive.

Number of Cylinders =0337?

The number of cylinders on the device. For floppy disks, the number
of cylinders depends on the media size and the track density.

Precomp. Cylinder =0000?

The cylinder number at which precompensation should occur for this
drive. This parameter is normally specified by the drive manufacturer.

Reduced Write Current Cylinder =0000?

The cylinder number at which the write current should be reduced
when writing to the drive. This parameter is normally specified by the
drive manufacturer.

Debugger Commands

http://www.motorola.com/computer/literature 3-105

3

Interleave Factor =00?

The manner in which the sectors are formatted on a track. Normally,
consecutive sectors in a track are numbered sequentially in increments
of 1 (interleave factor of 1). The interleave factor controls the physical
separation of logically sequential sectors. This physical separation
gives the host time to prepare to read the next logical sector without
requiring the loss of an entire disk revolution.

Spiral Offset =00?

The number of sectors that the first sector of each track is offset from
the index pulse. This is used to reduce latency when crossing track
boundaries.

ECC Data Burst Length =0000?

The number of bits to correct for an ECC error when supported by the
disk controller

Step Rate Code =00?

The rate at which the read/write heads can be moved when seeking a
track on the disk. The encoding is as follows:

Step Rate
Code (Hex)

Winchester
Hard Disks

3-1/2 and
5-1/4 Inch

Floppy

8-Inch
Floppy

00 0 msec 12 msec 6 msec

01 6 msec 6 msec 3 msec

02 10 msec 12 msec 6 msec

03 15 msec 20 msec 10 msec

04 20 msec 30 msec 15 msec

3-106 Embedded Communications Computing Web Site

Debugger Commands

3

Single/Double DATA Density =D (S/D)?

Single/Double TRACK Density =D (S/D)?

The density (tracks per inch)

Single/Equal_in_all Track zero density =S (S/E)?

The data density of track 0, either a single density or equal to the
density of the remaining tracks. For Equal_in_all, the Single/Double
data density flag indicates the density of track 0.

Slow/Fast Data Rate =S (S/F)?

The data rate for floppy disk devices

S Single (FM) data density

D Double (MFM) data density

S 48 TPI = Single Track Density

D 96 TPI = Double Track Density

S 250 kHz data rate

F 500 kHz data rate

Debugger Commands

http://www.motorola.com/computer/literature 3-107

3

Gap 1 =07?

The number of words of zeros that are written before the header field
in each sector during format.

Gap 2 =08?

The number of words of zeros that are written between the header and
data fields during format and write commands

Gap 3 =00?

The number of words of zeros that are written after the data fields
during format commands

Gap 4 =00?

The number of words of zeros that are written after the last sector of a
track and before the index pulse

Spare Sectors Count =00?

The number of sectors per track allocated as spare sectors. These
sectors are only used as replacements for bad sectors on the disk.

Examples

Example 1: Examine the default parameters of a 5-1/4 inch floppy disk.

PPC1-Bug>IOT <Return>
Controller LUN =00? <Return>
Device LUN =00? 2 <Return>
Device Type [00-1F] =00? <Return>
Removable Media = Y (Y/N)? <Return>
Sector Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <Return>
Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 =01 (0-5)? <Return>

3-108 Embedded Communications Computing Web Site

Debugger Commands

3

Sectors/track =0010? <Return>
Number of heads =02? <Return>
Number of cylinders =0050? <Return>
Precomp. Cylinder =0028? <Return>
Step Rate Code =00? <Return>
Single/Double TRACK density=D (S/D)? <Return>
Single/Double DATA density =D (S/D)? <Return>
Single/Equal_in_all Track zero density =S (S/E)? <Return>
Slow/Fast Data Rate =S (S/F)? <Return>
PPC1-Bug>

Example 2:

PPC1-Bug>iot;a <Return>
I/O Controllers Supported:
CLUN CNTRL-TYPE CNTRL-Address N-Devices

1 PC8477 $800003F0 1
2 PC87303IDE $80000 1F0 2
X NCR53C810 Any PCI *
X NCR53C825 Any PCI *
X NCR53C875 Any PCI *
X SL82C105 Any PCI 4
X PBC-EIDEF1 Any PCI 4

PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-109

3

IRD, IRM, IRS - Idle MPU Register Display/Modify/Set

Note These commands are for multi-processor boards only.

Command Inputs

IRD MPU# ARGS

IRM MPU# ARGS

IRS MPU# ARGS

Descriptions

The IRD command allows you to display the idle processor’s registers. The
idle processor is specified by the argument MPU#. This argument depends
on your configuration. The ARGS argument is equivalent to the argument
string as required by the command RD. Refer to the RD command for
argument syntax.

The IRM command allows you to examine/modify the idle processor’s
registers. The idle processor is specified by the argument MPU#. This
argument depends on your configuration. The ARGS argument is
equivalent to the argument string as required by the command RM. Refer
to the RM command for argument syntax.

The IRS command allows you to display/set a particular register of the idle
processor’s register set. The idle processor is specified by the argument
MPU#. This argument depends on your configuration. The ARGS
argument is equivalent to the argument string as required by the command
RS. Refer to the RS command for argument syntax.

Refer to the individual commands (RD, RM, and RS) for examples.

3-110 Embedded Communications Computing Web Site

Debugger Commands

3

LO - Load S-Records from Host

Command Input

LO [PORT] [ADDR] [;[X] [C] [T]] [=text]

Arguments

Options

More than one option may be used.

PORT Port to be used for the downloading.

The default is port 1.

ADDR Offset address which is to be added to the address contained in the
address field of each record. This causes the records to be stored to
memory at different locations than would normally occur. The
contents of the automatic offset register are not added to the S-
record addresses.

X Echo the S-records to your terminal as they are read in at the host
port.

C Ignore checksum. A checksum for the data contained within an S-
record is calculated as the S-record is read in at the port. Normally,
this calculated checksum is compared to the checksum contained
within the S-record and if the compare fails, an error message is
sent to the screen on completion of the download. If this option is
selected, then the comparison is not made.

T System Call code. This option causes LO to set the target register
R04 to ‘LO$01’ ($4C4F2001).

The ASCII string LO indicates the LO command. The code $01
indicates system call support with stack parameter/result passing
and system call disk support.

This code can be used by the downloaded program to select the
appropriate calling convention when invoking debugger functions
(necessary because some Motorola debuggers use conventions
different from PPCBug, and they set a different code in R05).

Debugger Commands

http://www.motorola.com/computer/literature 3-111

3

Description

The LO command downloads Motorola S-record files from a host system
to the debugger host. The LO command accepts serial data from the host
and loads it into memory.

Note You can download S-records at any baud rate supported by both
the debugger and the host system. If the X option is specified,
make sure that the baud rate of the host system is less than or
equal to the baud rate of the console. If there are any problems
loading the records, reduce the baud rate of the host.

In order to accommodate host systems that echo all received characters, the
above-mentioned text string is sent to the host one character at a time and
characters received from the host are read one-at-a-time. After the entire
command has been sent to the host, LO keeps looking for a line feed (LF)
character from the host, signifying the end of the echoed command. No
data records are processed until this <LF> is received. If the host system
does not echo characters, LO still keeps looking for a <LF> character
before data records are processed. For this reason, it is required in
situations where the host system does not echo characters, that the first
record transferred by the host system be a header record. The header record
is not used but the <LF> after the header record serves to break LO out of
the loop so that data records are processed.

The S-record format (refer to Appendix D, S-Record Format) allows for
an entry point to be specified in the address field of the termination record
of an S-record block. The contents of the address field of the termination
record (plus the offset address, if any) are put into the target IP. Thus, after
a download, you need only enter GO instead of GO ADDR to execute the
code that was downloaded.

=text The command that is sent to the host before the debugger begins to
look for S-records at the host port. The command is sent to the host
device to initiate the download. Do not enclose text in quote marks.

Do not separate the = and text with a space. If the host is operating
full duplex, the string is also echoed back to the host port by the
host and appears on your terminal screen.

3-112 Embedded Communications Computing Web Site

Debugger Commands

3

If a non-hexadecimal character is encountered within the data field of a
data record, then the part of the record which had been received up to that
time is printed to the screen and the PPCBug error handler is invoked to
point to the faulty character.

If the embedded checksum of a record does not agree with the checksum
calculated by PPCBug and if the checksum comparison has not been
disabled via the C option, then an error condition exists. A message is
output stating the address of the record (as obtained from the address field
of the record), the calculated checksum, and the checksum read with the
record. A copy of the record is also output. This is a fatal error and causes
the command to abort.

When a load is in progress, each data byte is written to memory and then
the contents of this memory location are compared to the data to determine
if the data stored properly. If for some reason the compare fails, then a
message is output stating the address where the data was to be stored, the
data written, and the data read back during the compare. This is also a fatal
error and causes the command to abort.

Because processing of the S-records is done character-by-character, any
data that was deemed good will have already been stored to memory if the
command aborts due to an error.

Example

For this example, assume that a host system was used to create the
following program:

 .file “test.s”
#
retrieve contents of the RTC registers
#
 .toc
T.FD: .tc FD.4330000080000000[tc] ,1127219200,-2147483648
 .toc
T..test:
 .tc ..test[tc], test[ds]
T..LDATA:
 .tc ..LDATA[tc], .LDATA
T..LRDATA:
 .tc ..LRDATA[tc], .LRDATA
#

Debugger Commands

http://www.motorola.com/computer/literature 3-113

3

 .align 2
 .globl test[ds]
 .csect test[ds]
 .long .test[pr], TOC[tc0], 0
 .globl .test[pr]
 .csect .test[pr]
.test:
 mfspr r4,4 # load RTC upper register
 stw r4,0(r3) # write to caller’s buffer
 mfspr r4,5 # load RTC lower register
 stw r4,4(r3) # write to caller’s buffer
 bclr 0x14,0x0 # return to the caller
FE_MOT_RESVD.test:
 .csect [rw]
 .align 2
.LDATA:
 .csect [rw]
 .align 2
.LRDATA:

Also assume program has been compiled and linked to start at address
65040000, and the program was converted into an S-record file named
test.mx as follows:

S325650400007C8402A6908300007C8502A6908300044E80002000000000650400006504002412
S30D65040020000000000000000069
S7056504000091

Load this file into memory for execution at address $40000 as follows:

PPC1-Bug>TM <Return>
Escape character: $01=^A.

Go into transparent mode to establish host link, input the necessary
character sequences to gain access to the S-Record file test.mx.

.

.

.

Exit transparent mode by inputting the escape character sequence, default
is Ctrl-a. At this point control will return to the debugger prompt.

.
PPC1-Bug>

3-114 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>LO ,,-65000000 ;X=cat test.mx <Return>
cat test.mx
S325650400007C8402A6908300007C8502A6908300044E800020000000006504000065040
02412
S30D65040020000000000000000069
S7056504000091
PPC1-Bug>

The S-records are echoed to the terminal because of the X option.

The offset address of -65000000 was added to the addresses of the records
in TEST.MX and caused the program to be loaded to memory starting at
$40000. The text cat test.mx is an operating system command line
that caused the file to be copied by the operating system to the port which
is connected with the debugger host’s host port.

PPC1-Bug>DS 40000,40014 <Return>
00040000 7C8402A6 MFSPR R4,4
00040004 90830000 STW R4,$0(R3) ($00041000)
00040008 7C8502A6 MFSPR R4,5
0004000C 90830004 STW R4,$4(R3) ($00041004)
00040010 4E800020 BCLR 20,0
PPC1-Bug>

The target IP now contains the entry point of the code in memory
($40000).

PPC1-Bug>RD <Return>
IP =00040000 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000000 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00040000 7C8402A6 MFSPR R4,4
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-115

3

MA - Macro Define/Display
NOMA - Macro Delete

Command Input

MA [NAME|;L]

NOMA [NAME]

Description

The MA command allows you to define a macro consisting of any number
of debugger commands with optional parameter specifications.

NOMA command is used to delete either a single macro or all macros.

The NAME argument is a macro name, which may be any combination of
one to eight alphanumeric characters.

Enter MA without a macro name to view a list of all currently defined
macros and their definitions.

When MA is invoked with the name of a currently defined macro, the
macro definition is displayed. Line numbers, which are assigned in
increments of 10, are shown to facilitate editing with the MAE command.

If MA is invoked with a valid name that does not currently have a
definition, then the debugger enters the macro definition mode. In response
to each macro definition prompt M=, type a debugger command followed
by the return key. To exit the macro definition mode, press the Return key
(null line) at the prompt.

Commands are not checked for syntax until the macro is invoked. A macro
must contain primitive debugger commands (i.e., no definition). If the
macro contains errors, you may either edit it with the MAE command or
delete with the NOMA command and redefine it.

Macro definitions are stored in a string pool of fixed size. If the string pool
becomes full while in the definition mode, the offending string is
discarded, a message STRING POOL FULL, LAST LINE
DISCARDED is printed and the user is returned to the debugger command
prompt. This also happens if the string entered would cause the string pool

3-116 Embedded Communications Computing Web Site

Debugger Commands

3

to overflow. The string pool has a capacity of 511 characters. The only way
to add or expand macros when the string pool is full is either to delete or
edit macro(s).

Debugger commands contained in macros may reference arguments
supplied at invocation time. Arguments are denoted in macro definitions
by embedding a back slash (\) followed by a numeral. Up to ten arguments
are permitted, numbered 0 through 9. A definition containing a back slash
followed by a zero would cause the first argument to that macro to be
inserted in place of the string “\0”. Similarly, the second argument would
be used in place of the string “\1”.

For instance, you may create a macro named ARGUE, with three
arguments, \0, \1, and \2. Entering ARGUE 3000 1 ;B at the debugger
prompt invokes the macro, with the text strings 3000, 1, and ;B replacing
the \0, \1, and \2 respectively, within the body of the macro.

The L option toggles the loop continuous macro mode. If the current
macro mode is loop continuous, once a macro is invoked, it will
automatically be re-invoked for continuous operation.

To delete a macro, invoke NOMA followed by the name of the macro.
Invoking NOMA without specifying a valid macro name deletes all
macros. If NOMA is invoked with a valid macro name that does not have
a definition, an error message is printed.

Examples

Example 1: Define the macro ABC.

PPC1-Bug>MA ABC <Return>
M=MD 3000 <Return>
M=GO \0 <Return>
M= <Return>
PPC1-Bug>

Example 2: Define the macro DIS.

PPC1-Bug>MA DIS <Return>
M=MD \0:17;DI <Return>
M= <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-117

3

Example 3: List all currently defined macros.

PPC1-Bug>MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
MACRO DIS
010 MD \0:17;DI
PPC1-Bug>

Example 4: List the definition of the macro ABC.

PPC1-Bug>MA ABC <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Example 5: Delete the macro DIS.

PPC1-Bug>NOMA DIS <Return>
PPC1-Bug>

Example 6: List all currently defined macros.

PPC1-Bug>MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Example 8: Delete all defined macros.

PPC1-Bug>NOMA <Return>
PPC1-Bug>

Example 9: List all currently defined macros.

PPC1-Bug>MA <Return>
NO MACROS DEFINED
PPC1-Bug>

3-118 Embedded Communications Computing Web Site

Debugger Commands

3

MAE - Macro Edit

Command Input

MAE NAME LINE # [STRING]

Arguments

Description

The MAE command allows you to edit a macro. MAE is line oriented and
allows inserting, deleting, and replacing individual lines.

Replace a line by specifying its line number and the replacement text.

Insert a line between two existing lines by specifying a LINE # that is
between line numbers of the two existing lines. For instance, assign
LINE # 15 to a new line that you want to insert between lines 010 and 020.
The text of the new line is the STRING.

Delete a line by specifying a line number and not adding any replacement
text.

The MAE command displays the macro, as edited, with the lines
renumbered in increments of 10.

Attempting to delete a nonexistent line results in an error message being
displayed. MAE does not permit deletion of a line if the macro consists
only of that line; you must remove it using the NOMA command.

MAE operates only on previously defined macros (use MA to define new
macros).

Line numbers serve one purpose: specifying the location within a macro
definition to perform the editing function. After the editing is complete, the
macro definition is displayed with a new set of line numbers.

NAME Macro name, which may be any combination of one to eight
alphanumeric characters

LINE # Line number (1-999) to be replaced or where a new line is to be
inserted

STRING Line to be inserted or replaced

Debugger Commands

http://www.motorola.com/computer/literature 3-119

3

Examples

Example 1: Add a line to macro ABC.

List definition of macro ABC.

PPC1-Bug>MA ABC <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Then add a line to macro ABC.

PPC1-Bug>MAE ABC 15 RD <Return>
MACRO ABC
010 MD 3000
020 RD
030 GO \0
PPC1-Bug>

Example 2: Replace line 010 from macro ABC.

PPC1-Bug>MAE ABC 10 MD 10+Z0 <Return>
MACRO ABC
010 MD 10+Z0
020 RD
030 GO \0
PPC1-Bug>

Example 3: Remove the specified line from the macro ABC.

PPC1-Bug>MAE ABC 30 <Return>
MACRO ABC
010 MD 10+Z0
020 RD
PPC1-Bug>

3-120 Embedded Communications Computing Web Site

Debugger Commands

3

MAL - Enable Macro Listing
NOMAL - Disable Macro Listing

Command Input

MAL

NOMAL

Description

The MAL command allows you to view expanded macro lines as they are
executed. This is especially useful when errors result, as the line that
caused the error appears on the display.

The NOMAL command is used to suppress the listing of the macro lines
during execution.

The use of MAL and NOMAL is a convenience for you and in no way
interacts with the function of the macros.

Debugger Commands

http://www.motorola.com/computer/literature 3-121

3

MAR - Load Macros

Command Input

MAR [controllerLUN] [[deviceLUN] [block#]]

Arguments

Description

The MAR command loads macros that have previously been saved by
MAW. Care should be taken to avoid attempting to load macros from a
location on the disk or tape other than that written to by the MAW
command. While MAR checks for invalid macro names and other
anomalies, the results of such a mistake are unpredictable.

Note MAR discards all currently defined macros before loading from
disk or tape.

Default are set each time either MAR or MAW is invoked. When either
command has been used, the default controller, device, and block numbers
are set to those used. If macros were loaded from controller 0, device 2,
block 8 with command MAR, the defaults for a later invocation of MAW
would be the same.

Errors encountered during I/O are reported along with the 16-bit status
word returned by the I/O routines.

Example

For the example, assume that controller 0, device 2 is accessible.

Load macros from block 3.

controllerLUN Logical Unit Number (LUN) of the controller to which the
following device is attached. This initially defaults to LUN
0.

deviceLUN LUN of the device to save/load macros to/from. This
initially defaults to LUN 0.

block# Number of the block on the above device that is the first
block of the macro list. This initially defaults to block 2.

3-122 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug> MAR 0,2,3 <Return>
PPC1-Bug>

List macros.

PPC1-Bug> MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Define macro ASM.

PPC1-Bug> MA ASM <Return>
M=MM \0;DI
M= (CR)
PPC1-Bug>

List all macros.

PPC1-Bug> MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
MACRO ASM
010 M=MM \0;DI
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-123

3

MAW - Save Macros

Command Input

MAW [controllerLUN] [[deviceLUN] [block#]]

Arguments

Description

The MAW command saves the currently defined macros to disk or tape.

The selected block number, controller LUN, and device LUN are
displayed, followed by a prompt to confirm the save (OK to proceed
(y/n)?).

The list is saved as a series of strings and may take up to three blocks. If
no macros are currently defined, no write is done. A NO MACRO
DEFINED message is displayed.

Default are set each time either MAR or MAW is invoked. When either
command has been used, the default controller, device, and block numbers
are set to those used. If macros were loaded from controller 0, device 2,
block 8 with command MAR, the defaults for a later invocation of MAW
would be the same.

Errors encountered during I/O are reported along with the 16-bit status
word returned by the I/O routines.

Example

For the example, assume that controller 0, device 2 is accessible.

Load macros from block 3.

controllerLUN Logical Unit Number (LUN) of the controller to which the
following device is attached. This initially defaults to LUN
0.

deviceLUN LUN of the device to save/load macros to/from. This
initially defaults to LUN 0.

block# Number of the block on the above device that is the first
block of the macro list. This initially defaults to block 2.

3-124 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug> MAR 0,2,3 <Return>
PPC1-Bug>

List macros.

PPC1-Bug> MA
MACRO ABC
010 MD 3000
020 GO \0
PPC1-Bug>

Define macro ASM.

PPC1-Bug> MA ASM <Return>
M=MM \0;DI
M= (CR)
PPC1-Bug>

List all macros.

PPC1-Bug> MA <Return>
MACRO ABC
010 MD 3000
020 GO \0
MACRO ASM
010 M=MM \0;DI
PPC1-Bug>

Save macros to block 8, previous device.

PPC1-Bug> MAW ,,8 <Return>

Saving to: VME320, Controller 0, Drive 2, Block/File Number 8
Number of Logical Blocks = 2
OK to proceed (y/N)? Y <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-125

3

MD, MDS - Memory Display

Command Input

MD ADDR[:COUNT | ADDR] [; [B|H|W|S|D|DI]]

MDS ADDR[:COUNT | ADDR] [; [B|H|W|S|D|DI]]

Options

Description

The MD and MDS commands display the contents of multiple memory
locations all at once.

The default data type is word. Also, for the integer data types, the data is
always displayed in hexadecimal along with its ASCII representation.

The optional COUNT argument specifies the number of data items to be
displayed (or the number of disassembled instructions to display if the
disassembly option is selected). The default is 8 for MD. MDS displays
128 items (a sector) as the default.

To re-execute the command, press the Return key at the prompt
immediately after the command has executed. The command displays an
equal number of data items or lines beginning at the next address.

Integer Data Types

B Byte

H Half-word

W Word

Floating Point Data Types

S Single Precision

D Double Precision

DI Enable the one-line disassembler. All other options are invalid if DI is
selected.

3-126 Embedded Communications Computing Web Site

Debugger Commands

3

Examples

Example 1:

PPC1-Bug>MD 22000;H <Return>
00022000 2800 1942 2900 1942 2800 1842 2900 2846 (..B)..B(..B).(F
PPC1-Bug> <Return>
00022010 FC20 0050 ED07 9F61 FF00 000A E860 F060 | .Pm..a....h’p’
PPC1-Bug>

Example 2: For this example, assume the microprocessor register state is
R5=00023627.

PPC1-Bug>MD R5:&19;B <Return>
00023627 4F 82 00 C5 9B 10 33 7A DF 01 6C 3D 4B 50 0F 0F O..E..3z_.l=KP..
00023637 31 AB 80 1+.
PPC1-Bug>

Example 3:

PPC1-Bug>MD 30000;DI <Return>
00030000 3CA00000 ADDIS R5,R0,$0
00030004 2B040000 CMPLI CRF6,0,R4,$0
00030008 419A0014 BC 12,26,$0003001C
0003000C 98A30000 STB R5,$0(R3) ($00041004)
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
00030014 38630001 ADDI R3,R3,$1
00030018 4BFFFFEC B $00030004
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

Example 4:

PPC1-Bug>MD 20000;D <Return>
00020000 0_521_9415513BBFC7C= 3.1400000000000010_E+0087
00020008 1_740_05800C000D2A5=-5.8508426708663386_E+0250
00020010 0_2B3_BFF25B8031E80= 1.9999900000000014_E-0100
00020018 0_47C_97EC34022A8D5= 6.7777778899999985_E+0037
00020020 0_423_6FEB11A600001= 9.8762300000000015_E+0010
00020028 0_3F8_47B56E95931C5= 1.0000876423100000_E-0002
00020030 0_2B8_407C89A021ADB= 4.5789000000000044_E-0099
00020038 0_44C_52D0F4552863F= 2.0000179999999999_E+0023
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-127

3

Example 5:

PPC1-Bug>MD 10000;S <Return>
00020000 0_A4_194155= 1.6455652147200000_E+0011
00020004 0_27_3BFC7C= 4.7454405384196168_E-0027
00020008 1_E8_005800=-4.0673757930760459_E+0031
0002000C 1_80_00D2A5=-2.0128567218780518_E+0000
00020010 0_56_3BFF25= 6.6789829960070541_E-0013
00020014 1_70_031E80=-3.1261239200830460_E-0005
00020018 0_8F_497EC3= 1.0316552343750000_E+0005
0002001C 0_80_22A8D5= 2.5415546894073486_E+0000
PPC1-Bug>

Example 6:

PPC1-Bug>MDS 30000 <Return>
00030000 3CA00000 2B040000 419A0014 98A30000 <...+...A.......
00030010 3884FFFF 38630001 4BFFFFEC 4E800020 8...8c..K...N..
00030020 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030030 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030040 00000000 00000000 00000000 00000000
00030050 00000000 00000000 00000000 00000000
00030060 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030070 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030080 00000000 00000000 00000000 00000000
00030090 00000000 00000000 00000000 00000000
000300A0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000300B0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000300C0 00000000 00000000 00000000 00000000
000300D0 00000000 00000000 00000000 00000000
000300E0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000300F0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030100 00000000 00000000 00000000 00000000
00030110 00000000 00000000 00000000 00000000
00030120 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030130 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030140 00000000 00000000 00000000 00000000
00030150 00000000 00000000 00000000 00000000
00030160 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030170 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00030180 00000000 00000000 00000000 00000000
00030190 00000000 00000000 00000000 00000000
000301A0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000301B0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000301C0 00000000 00000000 00000000 00000000
000301D0 00000000 00000000 00000000 00000000
000301E0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000301F0 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
PPC1-Bug>

3-128 Embedded Communications Computing Web Site

Debugger Commands

3

Example 7:

PPC1-Bug>MDS 30000;B <Return>
00030000 3C A0 00 00 2B 04 00 00 41 9A 00 14 98 A3 00 00 <...+...A.......
00030010 38 84 FF FF 38 63 00 01 4B FF FF EC 4E 80 00 20 8...8c..K...N..
00030020 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00030030 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00030040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00030050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00030060 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
00030070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
PPC1-Bug>

Example 8:

PPC1-Bug>MDS 30000;H <Return>
00030000 3CA0 0000 2B04 0000 419A 0014 98A3 0000 <...+...A.......
00030010 3884 FFFF 3863 0001 4BFF FFEC 4E80 0020 8...8c..K...N..
00030020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00030030 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00030040 0000 0000 0000 0000 0000 0000 0000 0000
00030050 0000 0000 0000 0000 0000 0000 0000 0000
00030060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00030070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
00030080 0000 0000 0000 0000 0000 0000 0000 0000
00030090 0000 0000 0000 0000 0000 0000 0000 0000
000300A0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
000300B0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
000300C0 0000 0000 0000 0000 0000 0000 0000 0000
000300D0 0000 0000 0000 0000 0000 0000 0000 0000
000300E0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
000300F0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-129

3

MENU - System Menu

Command Input

MENU

Description

The MENU command displays the System Menu, which is shown below:

1 Continue System Start Up
2 Select Alternate Boot Device
3 Go to System Debugger
4 Initiate Service Call
5 Display System Test Errors
6 Dump Memory to Tape
Enter Menu #:

You can return to the debugger by entering 3 at the Enter Menu #
prompt. (If you execute the Menu command from the PPC1-Diag>
prompt, menu option 3 will return you to the PPCBug diagnostics.)

Refer to Appendix B for information on using the System Menu.

3-130 Embedded Communications Computing Web Site

Debugger Commands

3

M, MM - Memory Modify

Command Input

M ADDR [;[[B|H|W|S|D] [A] [N]]|[DI]],

MM ADDR [;[[B|H|W|S|D] [A] [N]]|[DI]]

Options

Description

The M and MM command are used to view and change the contents of
memory. The command reads and displays the contents of memory at the
specified address and prompts you with a question mark (?).

You may change the displayed value by typing a new value followed by
the Return key. To leave the memory location unchanged, press the Return
key without typing a new value. That memory location is closed and the
next location is opened.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the memory locations. The special
characters are:

Integer Data Types

B Byte

H Half-word

W Word

Floating Point Data Types

S Single Precision

D Double Precision

Other Options:

N Disable the read portion of the command

A Force alternate location accesses only

DI Enable the one-line assembler/disassembler. All other options are
invalid if this option is selected.

Debugger Commands

http://www.motorola.com/computer/literature 3-131

3

The command reads the memory and verifies that the new contents match
what was written. An error message appears if the value read back is not
the same as the value written (i.e., if the write was not allowed).

When the one-line assembler/disassembler is enabled, the contents of the
specified memory location are disassembled and displayed and you are
prompted with a question mark (?) for input. At this point, you have three
choices:

❏ Press the Return key. This closes the present location and continues
with disassembly of next instruction.

❏ Enter a new source instruction and press the Return key. This
invokes the assembler, which assembles the instruction and
generates a listing file of one instruction.

❏ Enter a period (.) and press the Return key. This closes the present
location and exits the M and MM command.

If a new source line is entered, the present line is erased and replaced by
the new source line entered. If a printer port is configured (hard copy mode), a
line feed is done instead of erasing the line.

If an error is found during assembly, an error message such as NON-
EXISTENT OPERAND or NON-EXISTENT MNEMONIC appears. The
location being accessed is redisplayed.

Refer to Chapter 4 for information on the PPCBug assembler.

V or v Open the next memory location. This is the default, and
remains in effect until changed by entering one of the other
special characters.

^ Back up and open the previous memory location

= Re-open the same memory location (this is useful for
examining I/O registers or memory locations that are changing
over time)

. Terminate the MM command, and return control to the
debugger

3-132 Embedded Communications Computing Web Site

Debugger Commands

3

Examples

Example 1: Access location $20000, modify memory, modify and
backup, and modify memory and exit.

PPC1-Bug>MM 20000;H <Return>
00020000 1234? <Return>
00020002 5678? 4321 <Return>
00020004 9ABC? 8765^ <Return>
00020002 4321? <Return>
00020000 1234? ABCD. <Return>
PPC1-Bug>

Example 2: Word access to location $20004 with alternate location access
option enabled, modify and reopen location, and exit memory modify.

PPC1-Bug>MM 10004;WA <Return>
00020004 CD432187? <Return>
0002000C 00068010? 68010+10= <Return>
0002000C 00068020? <Return>
0002000C 00068020? . <Return>
PPC1-Bug>

Example 3: Assemble a new source line.

PPC1-Bug>MM 40000;DI <Return>
00040000 00000000 WORD $00000000? ADDIS R10,R0,1000 <Return>
00040000 3D401000 ADDIS R10,R0,$1000
00040004 00000000 WORD $00000000? ORI R10,R10,FFFF <Return>
00040004 614AFFFF ORI R10,R10,$FFFF
00040008 00000000 WORD $00000000? . <Return>
PPC1-Bug>

Example 4: New source line with error.

PPC1-Bug>MM 40008;DI <Return>
00040008 00000000 WORD $00000000? FOO R20,R0,10 <Return>
Assembler Error: Unknown Mnemonic

00040008 00000000 WORD $00000000? ORI R20,R0,10 <Return>
00040008 60140010 ORI R20,R0,$10
0004000C 00000000 WORD $00000000? . <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-133

3

Example 5: Step to next location and exit MM.

PPC1-Bug>MM 40000;DI <Return>
00040000 3D401000 ADDIS R10,R0,$1000? <Return>
00040004 614AFFFF ORI R10,R10,$FFFF? . <Return>
PPC1-Bug>

Example 6: Double precision floating point numbers.

PPC1-Bug>MM 20000;D <Return>
00020000 3.140000000000001_E+87? 1.2 <Return>
00020008 -5.8508426708663386_E+250? 2 <Return>
00020010 1.9999900000000014_E-100? 4.357E+10 <Return>
00020018 6.7777778899999985_E+37? 2.765E-99 <Return>
00020020 9.8762300000000015_E+10? -4.876E-34 <Return>
00020028 1.00008764231_E-2? -1.023E101 <Return>
00020030 4.5789000000000044_E-99? 1_7FF_FFFFFFFFFFFFF. <Return>
PPC1-Bug>

PPC1-Bug>MD 20000:7;D <Return>
00020000 0_3FF_3333333333333= 1.2000000000000000_E+0000
00020008 0_400_0000000000000= 2.0000000000000000_E+0000
00020010 0_422_449F2E0FFFFFF= 4.3569999999999992_E+0010
00020018 0_2B7_830E4EB15EA1B= 2.7650000000000032_E-0099
00020020 1_390_4410D74F66DA5=-4.8760000000000030_E-0034
00020028 1_54E_762B1924BFDD5=-1.0230000000000001_E+0101
00020030 1_7FF_FFFFFFFFFFFFF=-0.FFFFFFFFFFFFF000_E-0FFF
PPC1-Bug>

Example 7: Attempt to write to a location that is not available.

PPC1-Bug>MM 80000080 <Return>
80000080 00000000 ? 1
** WARNING: NO MATCH **
80000080 00000000 ? .
PPC1-Bug>

3-134 Embedded Communications Computing Web Site

Debugger Commands

3

MMD - Memory Map Diagnostic

Command Input

MMD RANGE INCREMENT [;B|H|W]

Options

Description

The MMD command is used to find and display ranges of addresses that
are readable. This is done by reading memory locations within the
RANGE. If a successful transaction to a location is completed, that address
is included in a found range, else in a not-found range. The transaction (a
read) is done with the data type specified on the command line.

INCREMENT is the value that is added to the old transaction address after
the transaction is complete to form the next transaction address. The
INCREMENT will be scaled by the data type, i.e., 1x for byte, 2x for half-
word, and 4x for word.

The default data type is word.

Examples

Example 1: Look for any memory between $0 and $10000000 with an
increment of $10000 by bytes. MMD reports that only $800000 (8Mbytes)
of memory was found.

PPC1-Bug>MMD 0 10000000 10000;B <Return>
Effective address: 00000000
Effective address: 10000000
$00000000-$007F0000 PRESENT
$00800000-$0FFF0000 NOT-PRESENT
PPC1-Bug>

B Byte

H Half-word

W Word

Debugger Commands

http://www.motorola.com/computer/literature 3-135

3

Example 2: Look for any memory between $10000000 and $FFFFFFFF
with an increment of $40000 by bytes.

PPC1-Bug>MMD 10000000 FFFFFFFF 40000;B <Return>
Effective address: 10000000
Effective address: FFFFFFFF
$10000000-$7FFC0000 NOT-PRESENT
$80000000-$9FFC0000 PRESENT
$A0000000-$FFEC0000 NOT-PRESENT
$FFF00000-$FFFC0000 PRESENT
PPC1-Bug>

3-136 Embedded Communications Computing Web Site

Debugger Commands

3

MMGR - Memory Manager

Command Synopsis

MMGR D [flag]
Q [S [addr] | F | A]
A size [align [addr [Z]]]
F addr
E start size

Description

The MMGR command provides access to PPCBug Memory Manager
services. These services encompass the following three categories:

❏ Diagnostic(D) - controls the degree of textual information the
manager will provide concerning its activities.

❏ Query (Q) - provides information about the current state of managed
memory.

❏ Active (A, F, or E) - controls memory use on behalf of the user.

Diagnostic Command - MMGR D [flag]

This command accesses the diagnostic flag that controls the density of the
memory manager monolog. If the flag parameter is omitted, the response
is the current value. Otherwise, the flag is set to the provided value and
there is no response. The flag is bit-wise interpreted as follows:

0 Only failure, error, and catastrophic information provided.

1 Enables validation and verification of managed memory. Errors of
management and memory misuse are reported. This mode of operation
is not recommended for extended use, since it requires some extra
processing.

2 Provides tracking of allocation and free requests.

4 Provides commentary and displays the allocated list after
allocation/free activities.

Debugger Commands

http://www.motorola.com/computer/literature 3-137

3

8 More detailed commentary and displays some data from the start and
end of each allocated block.

While these levels are essentially independent, it is intended that the more
detailed information levels will be requested in concert with lower levels.

Query Commands - MMGR Q [S [addr] | F | A]

The query interface will provide information on the current state of
managed memory. Queries may be one of three types.

System If the second parameter is S, or there is no second
parameter, system data is displayed (see Example 1).

If a third parameter is used, it will be interpreted as an address where the
above data is to be deposited. The form is as defined by the structure
MemQuery_t in mem_mgr.h

Free List If the second parameter is F, the free list is displayed.
The blocks are numbered, sorted in ascending address
order, and each is accompanied by its size.

Allocated List If the second parameter is A, the allocated list is
displayed. The blocks are numbered, sorted in
ascending address order, and each is accompanied by its
size. The first and last blocks listed are list terminators
and are specified as zero size.

Active Commands - MMGR A size [align [addr[z]]]
F addr
E start size

Allocate If the first parameter is A, memory is allocated from the
PPCBug’s partition. Size must be specified, and it is
rounded up to a minimum allocation size. Align is an
operational parameter that requests a byte-boundary for
block alignment. If this value is not a power of two, it is
rounded up until it is. Addr is an optional parameter
that requests that a specific address be allocated. Z is an
optional parameter that requests that the allocated block
be zero filled. The optional parameters are position

3-138 Embedded Communications Computing Web Site

Debugger Commands

3

dependent so each must be provided up to the last one
desired. For this reason, zero is taken to be a harmless
value. See example number 2.

Free If the first parameter is F, previously allocated memory
at the specified address is put back on the free list. There
are no optional parameters for this command. Special
care is recommended with this command as it is
possible to free up memory that is currently in use!

Expand If the first parameter is E, the PPCBug’s memory
partition is expanded. The expansion parameters need
not specify an area contiguous with the current
partition, but if not, a phantom block covering the gap
appears on the allocated list. If the request overlaps
memory that is currently being managed, Bug displays
an error message.

Examples:

Example 1: Display System Values

PPC4-Bug>MMGR Z S <Return>
MemMgr Query: start(0x1F00000), size(0xFA000), free(0x95904), alloc(0x646B4)
MemMgr Query: - alloc[biggest(0x32064) #(26)], free[biggest(0x880A0)#(13)]
MemMgr Query: - Overhead Sys(0x48) Block(0x1C) bytes.

Where:

start is the lowest address in the managed partition,

size is the total number of bytes in the partition less that
required for system management,

free is the sum of bytes in all of the free blocks,

alloc is the sum of bytes in all of the allocated blocks,

alloc[biggest is the size of the largest allocated block in bytes,

alloc[# is the count of allocated blocks

free[biggest is the size of the largest free block in bytes,

free[# is the count of free blocks

Debugger Commands

http://www.motorola.com/computer/literature 3-139

3

Overhead Sys is the number of bytes required for system management,

Overhead Block is the byte per block management usage.

Example 2: Display the free list

PPC4-Bug>MMGR Q F <Return>
MemMgr: FREE LIST
Control=0x1F00000, Range=0x1F00048-0x1FF9FFF Size=0xF9FB8 Debug=0
1 (0x1F00048-0x000090) 2 (0x1F0309C-0x000004) 3 (0x1F03C34-0x000004)
4 (0x1F04384-0x000004) 5 (0x1F05234-0x000004) 6 (0x1F0A73C-0x000004)
7 (0x1F0BA4C-0x000004) 8 (0x1F0BA8C-0x000004) 9 (0x1F4FCBC-0x000004)
10 (0x1F50CDC-0x000004)11 (0x1F514FC-0x000004)12 (0x1F5BF44-0x0880BC)
13 (0x1FEC7E4-0x00D81C)

Where:

Control is the location of the manager’s control block

Range is the largest and smallest address in the managed
partition

Size is the total number of allocatable bytes in the managed
partition. If there are no gaps, it will be the difference of
the range values.

Debug is the current value of the Debug flag.

Example 3: Allocate a sixteen byte aligned, zero filled, 1000 byte block.

PPC4-Bug>MMGR A 1000 10 0 Z <Return>
0x1000 cleared bytes allocated at 0x1F5DFA0

Example 4: Free the block allocated in Example 2

PPC4-Bug>MMGR F 1F5DFA0 <Return>
Free memory block at 0x1F5DFA0 OK

3-140 Embedded Communications Computing Web Site

Debugger Commands

3

MS - Memory Set

Command Input

MS ADDR {Hexadecimal number} {’string’}

Arguments

Description

The MS command writes data to memory starting at the specified address.

Note that one or more hexadecimal numbers and ASCII strings may be
entered in the same command.

Example

For this example, assume that memory is initially cleared:

PPC1-Bug>MS 25000 0123456789ABCDEF ’This is "PPC1Bug"’ 23456 <Return>
PPC1-Bug>

PPC1-Bug>MD 25000:20;B <Return>
00025000 01 23 45 67 89 AB CD EF 54 68 69 73 20 69 73 20 .#Eg....This is
00025010 22 45 56 4D 42 75 67 22 23 45 60 00 00 00 00 00 “PPC1Bug”#E‘.....
PPC1-Bug>

Hexadecimal number Hexadecimal value to be written to memory.

It is not assumed to be of a particular size, so it can
contain any number of digits (as allowed by
command line buffer size). If an odd number of
digits are entered, the least significant nibble of the
last byte accessed will be unchanged.

string An ASCII string to be written to memory.

Enclose it in single quotes (’). To include a quote as
part of string, enter two consecutive quotes.

Debugger Commands

http://www.motorola.com/computer/literature 3-141

3

MW - Memory Write

Command Input

MW ADDR DATA [;B|H|W]

Options

The default data size is word.

Description

The MW command writes a data pattern (DATA) to a specific location
(ADDR). No verify (read) is performed.

Examples

Example 1:

PPC1-Bug>MW 1E000 55AA55AA <Return>
Effective address: 0001E000
Effective data : 55AA55AA
PPC1-Bug>

PPC1-Bug>MD 1E000 <Return>
0001E000 55AA55AA 00000000 00000000 00000000 U.U.............
0001E010 00000000 00000000 00000000 00000000
PPC1-Bug>

Example 2:

PPC1-Bug>MW 1E000 77;B <Return>
Effective address: 0001E000
Effective data : 77
PPC1-Bug>

PPC1-Bug>MW 1E000 <Return>
0001E000 77AA55AA 00000000 00000000 00000000 w.U.............
0001E010 00000000 00000000 00000000 00000000
PPC1-Bug>

B Byte

H Half-word

W Word

3-142 Embedded Communications Computing Web Site

Debugger Commands

3

Example 3:

PPC1-Bug>MW 1E002 33CC;H <Return>
Effective address: 0001E002
Effective data : 33CC
PPC1-Bug>

PPC1-Bug>MD 1E000 <Return>
0001E000 77AA33CC 00000000 00000000 00000000 w.3.............
0001E010 00000000 00000000 00000000 00000000
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-143

3

NAB - Network Auto Boot

Command Input

NAB

Description

The NAB command re-invokes the network auto boot feature. This
command simply invokes the NBO command with the specified
parameters saved in NVRAM for the specified network interface. This
invocation occurs at system start-up and can be specified at either power-
up or at any reset condition.

Refer to NBO - Network Boot Operating System on page 3-147.

The clock must be running in order for this command to work properly.
Use TIME ;L to see if the clock is running. Use the SET command to start
and initialize the clock.

3-144 Embedded Communications Computing Web Site

Debugger Commands

3

NAP - NAP MPU

Note This command is for multi-processor boards only.

Command Input

NAP MPU#

Options

None

Description

The NAP command puts an idling CPU into a tight cached loop from
which it will never exit. The napping CPU will not intrude onto the bus.
This command is useful during performance analysis when it is desirable
to allow one single CPU access to the bus without having to share bus
bandwidth with another CPU.

To cause a processor to leave the napping state, a board reset must be
issued.

This command will issue an error message if the system does not contain
two processors.

Example: To ‘nap’ processor 1, do:

PPC1-Bug>NAP 1<Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-145

3

NBH - Network Boot Operating System, Halt

Command Input

NBH [ControllerLUN] [DeviceLUN] [ClientIPAddress] [ServerIPAddress] [String]

Arguments

Description

The NBH command loads an operating system or control program from
the server into memory, and halts. This command functions in exactly the
same way as the NBO command, except that control is not given to the
loaded program.

After the registers are initialized, control is returned to the debugger
monitor and the prompt reappears on the terminal screen. Because control
is retained by the debugger, all of the debugger’s facilities are available for
debugging the loaded program if necessary.

ControllerLUN Logical Unit Number (LUN) of the controller to which the
following device is attached.

It defaults to LUN 0.

DeviceLUN LUN of the device to boot from.

It defaults to LUN 0.

ClientIPAddress Internet Protocol Address of the client, basically
my/source IP address. It defaults to an IP address of 0
(refer to the NIOT command).

ServerIPAddress Internet Protocol Address of the server, basically the
destination IP address.

It defaults to an IP address of 0 (refer to the NIOT
command).

String A character string.

Up to 2 strings may be specified, usually the name of the
file to boot and an optional string (string 2). String 2, if
specified, is passed to the booted file. To specify string 2,
a delimiter must be used to differentiate from string 1
(boot filename). Both character strings default to a null
character string (refer to the NIOT command).

3-146 Embedded Communications Computing Web Site

Debugger Commands

3

The device and controller configuration parameters used when NBH is
initiated can be examined via the NIOT command.

Note that certain arguments will be passed (through MPU registers) to the
loaded program.

Refer to NBO - Network Boot Operating System on page 3-147 for
examples and further explanation.

Note The clock must be running in order for this command to work
properly. Use TIME ;L to see if the clock is running. Use the
SET command to start and initialize the clock.

Debugger Commands

http://www.motorola.com/computer/literature 3-147

3

NBO - Network Boot Operating System

Command Input

NBO [ControllerLUN] [DeviceLUN] [ClientIPAddress] [ServerIPAddress] [String]

Arguments

Description

The NBO command loads an operating system or control program from
the server into memory and gives control to it (execute). The load and
execution address of the file is specified via the configuration parameters.
The device and controller configuration parameters used when NBO is
initiated can be examined via the Network I/O Teach (NIOT) command.

NBO uses primarily the BOOTP, RARP, and TFTP protocols to load the
boot file. Refer to the DARPA Internet Request for Comments RFC-951,
RFC-903, and RFC-783, respectively, for the description of these

ControllerLUN Logical Unit Number (LUN) of the controller to which the
following device is attached.

It defaults to LUN 0.

DeviceLUN Logical Unit Number (LUN) of the device from which to
boot.

It defaults to LUN 0.

ClientIPAddress Internet Protocol Address of the client, basically
my/source IP address. It defaults to an IP address of 0
(refer to the NIOT command).

ServerIPAddress Internet Protocol Address of the server, basically the
destination IP address.

It defaults to an IP address of 0 (refer to the NIOT
command).

String String of characters.

Up to 2 strings may be specified, usually the name of the
file to boot and a optional string (string 2). String 2, if
specified, is passed to the booted file. To specify string 2 a
delimiter must be used to differentiate from string 1 (boot
filename). Both character strings default to a null character
string (refer to the NIOT command).

3-148 Embedded Communications Computing Web Site

Debugger Commands

3

protocols. You may skip the BOOTP phase (address determination and
bootfile selection) by specifying the IP addresses (server and client) and
the boot filename; the booting process would then start with the TFTP
phase (file transfer) of the boot sequence.

When the IP addresses are 0 they always force a BOOTP/RARP phase to
occur first. If all (client and server) of the IP addresses are
known/specified, the TFTP phase occurs first. If this phase fails in loading
the boot file, the BOOTP/RARP phase is initiated prior to subsequent
TFTP phase. If the filename is not specified, this also forces a
BOOTP/RARP phase to occur first. Note that the defaults specified by the
command always initiates a BOOTP/RARP phase. In any case the booting
(server) IP address is displayed as well as that of any failing IP address.

Once the IP addresses are obtained from the BOOTP server (or the
configuration parameters, if specified), the IP addresses are checked to see
if the server and the client are resident on the same network. If they are not,
the gateway IP address is used as the intermediate server to perform the
TFTP phase with.

If the server has only RARP capability, you need to specify the name of
the boot file, either by the command line or the configuration parameters
(refer to the NIOT command).

Prior to the TFTP phase an ARP request is transmitted for the hardware
(Ethernet) address of the server.

At selected times (when prompted or a time-out condition exists), the
booting process can be aborted by pressing the BREAK key on the console
keyboard or by pressing the abort switch on the front panel.

Note that certain arguments are passed (through MPU registers) to the
loaded program. The following is a list of the MPU registers and their
contents:

R3 Controller Logical Unit Number (CLUN) of the boot

R4 Device Logical Unit Number (DLUN) of the boot

R5 System Call Support available

R6 Base address of Network Controller Device

R7 Execution Address of Load Program

Debugger Commands

http://www.motorola.com/computer/literature 3-149

3

Invoke the NIOT command with the H option to see which LUNs are
available. Refer to Appendix G for a list of LUNs.

NBO uses primarily the BOOTP and TFTP protocols to load the boot file.
Refer to the DARPA Internet Request for Comments RFC-951 and RFC-
783, respectively, for the description of these protocols. You may skip the
BOOTP phase (address determination and bootfile selection) by
specifying the IP addresses (server and client) and the boot filename; the
booting process would then start with the TFTP phase (file transfer) of the
boot sequence.

You may invoke NBO without any arguments. Depending on the
interface’s configuration parameters, the display of various IP addresses
and the boot file name signifies that the BOOTP phase was successful. The
booting process halts and waits about 5 seconds for you to abort (by
pressing the BREAK key).

If you do not abort, a <CR><LF> sequence is printed to signify the
entrance into the TFTP phase of the boot process. Once this phase is
started, you cannot abort unless a time-out condition arises. When the boot
file is loaded into the user memory, the statistics of the TFTP phase (file
transfer) are displayed. The boot process continues with loading of the
MPU registers and execution of the loaded file.

Whenever an error occurs, the booting process is terminated and the error
code is displayed. The error codes are listed in Appendix H.

The clock must be running in order for this command to work properly.
Use TIME ;L to see if the clock is running. Use the SET command to start
and initialize the clock.

R8 Address to IPAs (Client, Server, Gateway)

R9 Pointer to Filename String (i.e., string start)

R10 Pointer to Filename String (i.e., string end + 1)

R11 Pointer to Argument String (i.e., string start)

R12 Pointer to Argument String (i.e., string end + 1)

3-150 Embedded Communications Computing Web Site

Debugger Commands

3

Examples

Example 1: Boot from controller LUN 0, device LUN 0, with default
client address of 255.255.17.34, server IP address of 255.255.17.21, and
bootfile /tftpboot/load.

PPC1-Bug>NBO 0 0 255.255.17.34 255.255.17.21 /ot/load <Return>
 ...

Example 2: Boot from controller LUN 0, device LUN 0, with default
client IP address, server IP address 255.255.17.21, and the default bootfile.

PPC1-Bug>NBO 0 0,,255.255.17.21 <Return>
 ...

Example 3: Invoke NBO with no arguments:

PPC1-Bug>NBO <Return>
Network Booting from: AM79c970, Controller 0, Device 0
Loading: Operating System
Client IP Address = 255.255.24.10
Server IP Address = 255.255.11.81
Gateway IP Address = 255.255.24.254
Subnet IP Address Mask = 255.255.24.254
Boot File Name = /riscy/fwdb/NETLOADER/nbldexp/M88K/nbld.out
Argument File Name =

Network Boot File load in progress... To abort hit <BREAK>

Bytes Received =&8912, Bytes Loaded =&8912
Bytes/Second =&2970, Elapsed Time =3 Second(s)
...

Debugger Commands

http://www.motorola.com/computer/literature 3-151

3

NIOC - Network I/O Control

Command Input

NIOC

Description

The NIOC command sends command packets directly to the Ethernet
network interface driver. The packet to be sent must already reside in
memory and must follow the packet protocol of the interface. This
command facilitates in the transmission and reception of raw packets
(command identifiers 2 and 3, listed below), as well as some control
(command identifiers 0, 1, 4, and 5, listed below).

The command packet specifies the network interface (CLUN/ DLUN),
command type (identifier), the starting memory address (data transfers),
and the number of bytes to transfer (data transfers). The command types
are listed in this header file as well.

The command types (identifiers) are as follows:

The initialization (type 0) of the device/channel/node must always be
performed first. If you have booted or initiated some other network I/O
command, the initialization would already have been done.

The flush receiver and receive buffer (type 4) would be used if, for
example, the current receive data is no longer needed, or to provide a
known buffer state prior to initiating data transfers.

The reset device/channel/node (type 5) would be used if another operating
system (node driver) needs to be control of the device/channel/node.
Basically, put the device/channel/ node to a known state.

0 Initialize device/channel/node

1 Get hardware (Ethernet) address (network node)

2 Transmit (put) data packet

3 Receive (get) data packet

4 Flush receiver and receive buffers

5 Reset device/channel/node

3-152 Embedded Communications Computing Web Site

Debugger Commands

3

Whenever an error occurs, the initiated I/O control process is terminated
and the appropriate error code is displayed. The error codes are listed in
Appendix H.

When invoked, NIOC enters an interactive mode which prompts for
information required to perform the command. You may change the
displayed value by typing a new value, and the Return key. To leave the
field unaltered, press the Return key without typing a new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the registers. The special characters are:

The clock must be running in order for this command to work properly.
Use TIME ;L to see if the clock is running. Use the SET command to start
and initialize the clock.

V or v Open the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous field

= Re-open the same field

. Terminate the NIOC command, and return control to the
debugger

Debugger Commands

http://www.motorola.com/computer/literature 3-153

3

Examples

Example 1: Initialize (type 0) the device/channel/node.

PPC1-Bug>NIOC <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Packet Address =00006454? <Return>
00006454 0000 0000 0000 0000 0000 0000 0000 0000
00006464 0000 0000
Send Packet (Y/N) =N? Y <Return>
PPC1-Bug>

Example 2: Retrieve the hardware address of the specified network
interface (type 1). Note that the transfer byte count is set to zero; this
specifies all possible data associated with the address retrieval. This also
holds true for the reception of data packets.

PPC1-Bug>NIOC <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Packet Address =00006454? <Return>
00006454 0000 0000 0000 0001 0000 E000 0000 0000
00006464 0000 0000
Send Packet (Y/N) =N? Y <Return>
PPC1-Bug>

View the address data retrieval.

PPC1-Bug>MD E000:6;B <Return>
0000E000 08 00 3E 21 0F CC ..>!..
PPC1-Bug>

Example 3: View the packet to transmit, ARP Request.

This example illustrates the transmission (type 2) of a packet (ARP
Request). The transfer byte count specifies how many bytes are to be
transmitted. If the transfer byte count is below the minimum transmit byte
count for the specified interface, the driver rounds to the minimum and
places it into your packet. However, the specified network interface driver
does not round down to the maximum if the transfer byte count exceeds the
maximum. You must ensure packet integrity (e.g., source and destination
addresses) for the specified network interface; the driver does not insert
any data.

3-154 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>MD E000:&21 <Return>
0000E000 FFFF FFFF FFFF 0800 3E21 0FCC 0806 0001 >!......
0000E010 0800 0604 0001 0800 3E21 0FCC ffff 0B2C >!.....,
0000E020 FFFF FFFF FFFF 8610 1112
PPC1-Bug>

PPC1-Bug>NIOC <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Packet Address =00006454? <Return>
00006454 0000 0000 0000 0002 0000 E000 0000 002A
00006464 0000 0000
Send Packet (Y/N) =N? Y <Return>
PPC1-Bug>

Example 4:

This example illustrates the reception of data (type 3). The driver does not
block (waits for incoming data). The control/status word field signifies
whether or not data has been received. Currently only one status bit is
specified, bit 16, the receipt of data. This bit is cleared if no data is present.
It is set if receive data is present. The transfer byte count is also set to the
number of bytes associated with this receive data packet. This field is only
valid when bit 16 is set.

PPC1-Bug>NIOC <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Packet Address =00006454? <Return>
00006454 0000 0000 0000 0003 0000 E000 0000 0000
00006464 0000 0000
Send Packet (Y/N) =N? Y <Return>
PPC1-Bug>

View the address data retrieval.

PPC1-Bug>NIOC <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Packet Address =00006454? <Return>
00006454 0000 0000 0000 0003 0000 E000 0000 0222
00006464 0001 0000
Send Packet (Y/N) =N? N <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-155

3

View the address data retrieval.

PPC1-Bug>MD E000:222;B <Return>
0000E000 FF FF FF FF FF FF 08 00 3E 20 C8 0A 08 00 45 00 >E.
0000E010 02 14 00 00 00 00 40 11 25 5E 90 BF 18 FE 90 BF @.%^......
0000E020 18 FF 02 08 02 08 02 00 55 34 02 01 00 00 00 02 U4......
0000E030 00 00 C0 13 01 00 00 00 00 00 00 00 00 00 00 00
0000E040 00 03 00 02 00 00 90 BF 82 00 00 00 00 00 00 00
0000E050 00 00 00 00 00 03 00 02 00 00 C0 13 02 00 00 00
0000E060 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E070 63 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02 c...............
0000E080 00 00 90 BF 83 00 00 00 00 00 00 00 00 00 00 00
0000E090 00 04 00 02 00 00 90 BF 03 00 00 00 00 00 00 00
0000E0A0 00 00 00 00 00 03 00 02 00 00 90 BF 84 00 00 00
0000E0B0 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E0C0 04 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02
0000E0D0 00 00 90 BF 85 00 00 00 00 00 00 00 00 00 00 00
0000E0E0 00 04 00 02 00 00 90 BF 06 00 00 00 00 00 00 00
0000E0F0 00 00 00 00 00 03 00 02 00 00 90 BF 86 00 00 00
0000E100 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E110 E6 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02
0000E120 00 00 90 BF 87 00 00 00 00 00 00 00 00 00 00 00
0000E130 00 04 00 02 00 00 90 BF C7 00 00 00 00 00 00 00
0000E140 00 00 00 00 00 02 00 02 00 00 90 BF 88 00 00 00
0000E150 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E160 28 00 00 00 00 00 00 00 00 00 00 00 00 02 00 02 (...............
0000E170 00 00 DE 01 08 00 00 00 00 00 00 00 00 00 00 00
0000E180 00 02 00 02 00 00 90 BF 08 00 00 00 00 00 00 00
0000E190 00 00 00 00 00 04 00 02 00 00 90 BF E8 00 00 00
0000E1A0 00 00 00 00 00 00 00 00 00 02 00 02 00 00 90 BF
0000E1B0 89 00 00 00 00 00 00 00 00 00 00 00 00 04 00 02
0000E1C0 00 00 90 BF 29 00 00 00 00 00 00 00 00 00 00 00 )...........
0000E1D0 00 04 00 02 00 00 90 BF AA 00 00 00 00 00 00 00
0000E1E0 00 00 00 00 00 04 00 02 00 00 90 BF 8A 00 00 00
0000E1F0 00 00 00 00 00 00 00 00 00 04 00 02 00 00 90 BF
0000E200 0A 00 00 00 00 00 00 00 00 00 00 00 00 03 00 02
0000E210 00 00 90 BF AB 00 00 00 00 00 00 00 00 00 00 00
0000E220 00 04 ..

Example 5: Flush the receiver and receive buffers (type 4).

PPC1-Bug>NIOC <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Packet Address =00006454? <Return>
00006454 0000 0000 0000 0004 0000 0000 0000 0000
00006464 0000 0000
Send Packet (Y/N) =N? Y <Return>
PPC1-Bug>

3-156 Embedded Communications Computing Web Site

Debugger Commands

3

This entry point is useful when the interface has not been accessed for
some time and you do not want receive data. The Network I/O commands
(i.e., NAB, NBH, NBO, NIOP, and NPING) use this feature prior to any
Network I/O transactions.

Debugger Commands

http://www.motorola.com/computer/literature 3-157

3

NIOP - Network I/O Physical

Command Input

NIOP

Description

The NIOP command allows you to get files from the supported Ethernet
network interfaces and put files to the supported Ethernet network
interfaces. When invoked, this command goes into an interactive mode,
prompting you for all parameters necessary to carry out the command. This
command basically uses the TFTP protocol to perform the file transfer.

The IP addresses for the TFTP session are obtained from the configuration
parameters. The IP addresses are checked to see if the server and the client
are resident on the same network. If they are not, the gateway IP address is
used as the intermediate server to perform the TFTP session with. The
filename character string has a maximum length of 64 bytes.

Whenever an error occurs, the TFTP session is terminated and the error
code is displayed. The error codes are listed in Appendix H.

Upon successful transfer of the specified file, the TFTP session statistics
are displayed.

When invoked, this command goes into an interactive mode, which
prompts for information required to perform the command. You may
change the displayed value by typing a new value, and the Return key. To
leave the field unaltered, press the Return key without typing a new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

V or v Open the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous field

= Re-open the same field

. Terminate the NIOP command, and return control to the
debugger

3-158 Embedded Communications Computing Web Site

Debugger Commands

3

The NIOP command utilizes the necessary configuration parameters to
perform the TFTP file transfer. Prompts appear for entering the
parameters. Refer to NIOT - Network I/O Teach (Configuration) on page
3-161 for a description of the parameters.

Note that winding (indexing) into a file is possible on a read (get), there is
a drawback in this feature due to the nature of TFTP, the entire file is
transferred across the network. But only the desired section of the file is
written to the user memory.

Refer to the DARPA Internet Request for Comments RFC-783 for the
description of the TFTP protocol. Prior to the TFTP session an ARP
request is transmitted for the hardware (Ethernet) address of the server.

At time-out conditions the file transfer process can be aborted by pressing
the BREAK key on the console keyboard or by pressing the abort switch
on the front panel.

Note The clock must be running in order for this command to work
properly. Use TIME ;L to see if the clock is running. Use the
SET command to start and initialize the clock.

The field prompts are shown below.

Controller LUN =00?

The Logical Unit Number (LUN) of the controller to access

Device LUN =00?

The LUN of the device to access

Debugger Commands

http://www.motorola.com/computer/literature 3-159

3

Get/Put =G?

File Name =?

The name of the file to load/store. On a write the file must exist on the
host system and also be writable (write permission). The filename
string must be null terminated. The maximum length of the string is 64
bytes inclusive of the null terminator.

Note The path of the file name to load/store must point to a tftp boot
area on the host system. See your host system administrator for
details on configuring a tftp boot area.

Memory Address =00004000?

Address of buffer in memory. On a read, data is read to (received to) starting
at this address. On a write, data is written (sent) starting at this address.

Length =00000001?

The number of bytes from the data transfer address to transfer. A
length of 0 specifies to transfer the entire file on a read. On a write the
length must be set to the number of bytes to transfer.

Byte Offset =00000001?

The offset into the file on a read. This permits users to wind into a file.

Example

Read a file into memory.

This example illustrates the reading (or getting) of the file
/tftboot/motorola.bin from the specified server (refer to the NIOT
command) into memory at address 00010000. The length field of 0
signifies to load the entire file. The load (get) of a file can be truncated to

G Read/get from host

P Write/put to host

3-160 Embedded Communications Computing Web Site

Debugger Commands

3

a desired length by specifying the desired length (non-zero). The byte
offset field can be used to wind (index) into a file (only used on file reads,
gets).

PPC1-Bug>NIOP <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Get/Put =G? <Return>
File Name =? /tftboot/motorola.bin <Return>
Memory Address =0000E000? 10000 <Return>
Length =00000000? <Return>
Byte Offset =00000000? <Return>
Bytes Received =&8912, Bytes Loaded =&8912 <Return>
Bytes/Second =&8912, Elapsed Time =1 Second(s) <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-161

3

NIOT - Network I/O Teach (Configuration)

Command Input

NIOT [;[A|H|D]]

Options

Description

The NIOT command allows you to set-up (“teach”) a new network
configuration on the debugger for use by the .NETxxx system calls. NIOT
lets you modify the controller and device descriptor tables used by the
.NETxxx system calls for network access. Note that because the debugger
commands that access the network use the same interface as the system
calls, changes in the descriptor tables affect all those commands. These
commands include NIOP, NBO, NBH, and also any user program that
uses the .NETxxx system calls.

Each controller LUN and device LUN combination has its own descriptor
table which houses configuration and run-time parameters. If the controller
and device LUNs are used for Network Automatic Boot, any changes
made by this command are saved in NVRAM.

A Display the Network Controllers/Nodes that are supported
by this version of the firmware. Each PCI controller is only
listed once.

H Display all Network Controllers/Nodes that are present in
the system. The display also includes the Protocol (Internet)
and Hardware (Ethernet) addresses.

D List Devices while probing

3-162 Embedded Communications Computing Web Site

Debugger Commands

3

Each mass storage boot device and network interface boot device is
identified by a device name. Each device type that the product supports is
contained/listed within device probe tables. These tables are modified to
contain the associative device name.

At probe time, the probed device’s name is copied into the dynamic device
configuration tables housed within in NVRAM. This will only be done, of
course, if the device is present. The user may view the system’s device
names by the performing the following operations.

For network interface devices, the D option allows users to display the
device names of the attached devices. These device names are per the IBM
firmware and the IBM AIX naming conventions.

When invoked, this command goes into an interactive mode, which
prompts for information required to perform the command. You may
change the displayed value by typing a new value, and the Return key. To
leave the field unaltered, press the Return key without typing a new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

You will be prompted to save changes.

The field prompts are shown below. A retry value of 0 is interpreted as no
maximum, always retry.

Node Control Memory Address=FFE10000?

The starting address of the necessary memory needed for the transmit
and receive buffers. 256KB are needed for the Ethernet driver
(transmit/receive buffers).

V or v Open the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous field

= Re-open the same field

. Terminate the NIOT command, and return control to the
debugger

Debugger Commands

http://www.motorola.com/computer/literature 3-163

3

As of version 1.8 of PPC1Bug, the node control memory address is
dynamically calculated. The saved version(i.e., NVRAM) is now
ignored.

Client IP Address =255.255.255.255?

The IP address of the client. The firmware is considered the client.

Server IP Address =255.255.255.255?

The IP address of the server. The server is the host system from which
the specified file is retrieved.

Subnet IP Address Mask =255.255.255.0?

The subnet IP address mask. This mask is used to determine if the
server and client are resident on the same network. If they are not, the
gateway IP address is used as the intermediate target (server).

Broadcast IP Address =255.255.255.255?

The broadcast IP address that the firmware utilizes when a IP
broadcast needs to be performed.

Gateway IP Address =255.255.255.255?

The gateway IP address. The gateway IP address would be necessary
if the server and the client do not reside on the same network. The
gateway IP address would be used as the intermediate target (server).

3-164 Embedded Communications Computing Web Site

Debugger Commands

3

Boot File Name (“NULL” for None) =?

The name of the boot file to load. Once the file is loaded, control is
passed to the loaded file (program). To specify a null filename, the
string “NULL” must be used; this resets the filename buffer to a null
character string.

Argument File Name (“NULL” for None) =?

The name of the argument file. This file may be used by the booted file
(program) for an additional file load. To specify a null filename, the
string “NULL” must be used; this resets the filename buffer to a null
character string.

Boot File Load Address =001F0000?
Boot File Execution Address=001F0000

The load and execution addresses of the boot file.

Boot File Execution Delay =00000000?

The delay, in seconds, before control is passed to the loaded file
(program).

Boot File Length =00000000?

The number of bytes from the data transfer address to transfer. A
length of 0 specifies to transfer the entire file on a read. On a write the
length must be set to the number of bytes to transfer.

Boot File Byte Offset =00000000?

The offset into the file on a read. This permits users to wind into a file.

BOOTP/RARP Request Retry =00?
TFTP/ARP Request Retry =00?

The number of retries that should be attempted prior to giving up. A
retry value of zero specifies always to retry (not give up).

Debugger Commands

http://www.motorola.com/computer/literature 3-165

3

Trace Character Buffer Address=00000000?

The starting address of memory in which to place the trace characters.
The receive/transmit packet tracing are disabled by default (value of
0). Any non-zero value enables tracing. Tracing would only be used in
a debug environment and normally should be disabled. Care should be
exercised when enabling this feature; you need to ensure that adequate
memory exists. The following characters are defined for tracing:

? Unknown

& Unsupported Ethernet Type

* Unsupported IP Type

% Unsupported UDP Type

$ Unsupported BOOTP Type

[BOOTP Request

] BOOTP Reply

+ Unsupported ARP Type

(ARP Request

) ARP Reply

- Unsupported RARP Type

{ RARP Request

} RARP Reply

^ Unsupported TFTP Type

\ TFTP Read Request

/ TFTP Write Request

< TFTP Acknowledgment

> TFTP Data

| TFTP Error

, Unsupported ICMP Type

: ICMP Echo Request

; ICMP Echo Reply

3-166 Embedded Communications Computing Web Site

Debugger Commands

3

BOOTP/RARP Request Control: Always/When-Needed (A/W) =W

BOOTP/RARP Reply Update Control: Yes/No (Y/N) =Y

This parameter specifies the updating of the configuration parameters
following a BOOTP/RARP reply. Receipt of a BOOTP/RARP reply
would only be in lieu of a request being sent.

Examples

Example 1: Invoke NIOT with no options. This shows the interactive
session for the various configuration parameters.

PPC1-Bug>NIOT <Return>
Controller LUN =00? <Return>
Device LUN =00? <Return>
Node Control Memory Address =FFE10000? <Return>
Client IP Address =255.255.255.255? <Return>
Server IP Address =255.255.255.255? <Return>
Subnet IP Address Mask =255.255.255.0? <Return>
Broadcast IP Address =255.255.255.255? <Return>
Gateway IP Address =255.255.255.255? <Return>
Boot File Name (“NULL” for None) =? <Return>
Argument File Name (“NULL” for None) =? <Return>
Boot File Load Address =001F0000? <Return>
Boot File Execution Address =001F0000? <Return>
Boot File Execution Delay =00000000? <Return>
Boot File Length =00000000? <Return>
Boot File Byte Offset =00000000? <Return>
BOOTP/RARP Request Retry =00? <Return>
TFTP/ARP Request Retry =00? <Return>
Trace Character Buffer Address =00000000? <Return>
BOOTP/RARP Request Control: Always/When-Needed (A/W) =W? <Return>
BOOTP/RARP Reply Update Control: Yes/No (Y/N) =Y? <Return>
PPC1-Bug>

 A BOOTP/RARP request is always sent, and the accompanying reply
expected

W BOOTP/RARP request is sent if needed (i.e., IP addresses of 0, null
boot file name)

Debugger Commands

http://www.motorola.com/computer/literature 3-167

3

Example 2: Display the network controllers/nodes that are present in the
system.

PPC1-Bug>niot;h <Return>
Network Controllers/Nodes Available
CLUN DLUN Name Address IP-Address/H-Address
0 0 DEC21143 $00007000 255.255.24.10/08003E282029
11 0 I82559 $00008800 0.0.0.0/08003E261B8F
PPC1-Bug>

Example 3: Display the Network Controllers/Nodes that are supported by
PPCBug.

PPC1-Bug>niot;a <Return>
Network Controllers/Nodes Supported
CLUN DLUN Name Address

X 0 DEC21040 Any PCI
X 0 DEC21140 Any PCI
X 0 DEC21143 Any PCI
X 0 I82559 Any PCI

PPC1-Bug>

!
Caution

If you use the NIOT debugger command, the network interface
configuration parameters need to be saved/retained in the NVRAM,
somewhere in the offset range $00000000 through $00000FFF. The
NIOT parameters do not exceed 128 bytes in size. The location for
these parameters is determined by setting the ENV pointer Network
Auto Boot Configuration Parameters Offset (NVRAM). If you
have used the exact same space for your own program information or
commands, they will be overwritten and lost.

You can relocate the network interface configuration parameters in
this space by using the ENV command to change the Network Auto
Boot Configuration Parameters Offset (NVRAM) from its default
of FFFFFFFF to the value you need so as to be clear of your data within
NVRAM.

3-168 Embedded Communications Computing Web Site

Debugger Commands

3

NPING - Network Ping

Command Input

NPING ControllerLUN DeviceLUN SourceIP DestinationIP [NPackets]

Arguments

Description

The NPING command probes the network. This probing facilitates the
testing, measurement, and management of the network. NPING utilizes
the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit an
ICMP ECHO_RESPONSE from a host or gateway.

The packet size has a fixed length of 128 bytes.

At any time an error occurs, the NPING session is terminated and the
appropriate error code is displayed. The error codes are listed in Appendix
H. The receive packet is checked for checksum and data integrity.

Prior to the NPING session an ARP request is transmitted for the hardware
(Ethernet) address of the destination. The source and destination IP
addresses must always be specified. No gateway IP address is used.

Refer to the DARPA Internet Request for Comments RFC-792 for the
description of the ICMP protocol.

If the destination does not respond within 10 seconds, the command
continues on with the next transmission. Between each successful
transmit/receive packet there is a one second delay; this is done so as not
to inundate the network.

ControllerLUN Logical Unit Number (LUN) of the controller to which the
device is attached.

DeviceLUN Logical Unit Number (LUN) of the device.

SourceIP Internet Protocol Address of the Source (initiator,
ECHO_REQUEST).

DestinationIP Internet Protocol Address of the Destination (target,
ECHO_RESPONSE).

NPackets Number of packets to send. It defaults to infinity.

Debugger Commands

http://www.motorola.com/computer/literature 3-169

3

If the number of packets is not specified on the command line, the
command will indefinitely transmit/receive packets. You must press the
BREAK key to abort the session.

The clock must be running in order for this command to work properly.
Use TIME ;L to see if the clock is running. Use the SET command to start
and initialize the clock.

Examples

Example 1: Transmit/receive $10 (16) ping packets. Once the ping session
is complete, the command displays the statistics of the session.

PPC1-Bug>NPING 0 0 255.255.24.10 255.255.24.254 10 <Return>
Source IP Address = 255.255.24.10
Destination IP Address = 255.255.24.254
Number of Packets Transmitted =16, Packets Lost =0, Packet Size =128
PPC1-Bug>

Example 2: This example illustrates the indefinite transmission/ reception
of packets.

PPC1-Bug>NPING 0 0 255.255.24.10 255.255.24.254 <Return>
Source IP Address = 255.255.24.10
Destination IP Address = 255.255.24.254
(<BREAK> key pressed)
Number of Packets Transmitted =1955, Packets Lost =0, Packet Size =128
PPC1-Bug>

3-170 Embedded Communications Computing Web Site

Debugger Commands

3

OF - Offset Registers Display/Modify

Command Input

OF [Zn[;A]]

Description

The OF command allows you to access and change pseudo-registers called
offset registers. These registers are used to simplify the debugging of
relocatable and position-independent modules.

There are eight offset registers Z0-Z7, but only Z0-Z6 can be changed. Z7
always has both base and top addresses set to 0. This allows the automatic
register function to be effectively disabled by setting Z7 as the automatic
register.

Each offset register has two values: base and top. The base address is the
absolute least address that is used for the range declared by the offset
register. The top address is the absolute greatest address that is used.

OF without the argument or option displays all offset registers. An asterisk
indicates which register is the automatic register.

The argument Zn is the register that is displayed or modified register.

The option A sets register Zn as the automatic register. The automatic register
is one that is automatically added to each absolute address argument of
every command unless an offset register is explicitly added. An asterisk
indicates which register is the automatic register.

When invoked with the Zn argument, this command goes into an
interactive mode, prompting you for information. You may change the
displayed register by typing a new value, followed by pressing the Return
key. To leave the register unaltered, press the Return key without typing a
new value.

Enter the following parameters:

[base_address [top_address]]

or

Debugger Commands

http://www.motorola.com/computer/literature 3-171

3

[base_address [: byte_count]]

The top_address must equal or exceed the base_address. Wrap-around is
not permitted. The default for byte_count is 1MB.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through register Zn. The special characters are:

Offset register rules:

❏ At power-up and cold start reset, Z7 is the automatic register.

❏ At power-up and cold start reset, all offset registers have both base
and top addresses preset to 0. This effectively disables them.

❏ Z7 always has both base and top addresses set to 0; it cannot be
changed.

❏ Any offset register can be set as the automatic register.

❏ The automatic register is always added to every absolute address
argument of every debugger command where there is not an offset
register explicitly called out.

❏ There is always an automatic register. A convenient way to disable
the effect of the automatic register is by setting Z7 as the automatic
register. Note that this is the default condition.

Examples

Example 1: Display offset registers.

V or v Open the next register. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous register

= Re-open the same register

. Terminate the OF command, and return control to the
debugger

3-172 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>OF <Return>
Z0 =00000000 00000000 Z1 = 00000000 00000000
Z2 =00000000 00000000 Z3 = 00000000 00000000
Z4 =00000000 00000000 Z5 = 00000000 00000000
Z6 =00000000 00000000 Z7*= 00000000 00000000
PPC1-Bug>

Example 2: Modify some offset registers.

PPC1-Bug>OF Z0 <Return>
Z0 =00000000 00000000? 20000 200FF <Return>
Z1 =00000000 00000000? 25000:200^ <Return>
Z0 =00020000 000200FF? . <Return>
PPC1-Bug>

Look at location $20000.

PPC1-Bug>M 20000;DI <Return>
00000+Z0 3C600004 ADDIS R3,R0,$4? . <Return>
PPC1-Bug>

PPC1-Bug>M Z0;DI <Return>
00000+Z0 3C600004 ADDIS R3,R0,$4? . <Return>
PPC1-Bug>

Example 3: Set Z0 as the automatic register.

PPC1-Bug>OF Z0;A <Return>
Z0*=00020000 000200FF? . <Return>
PPC1-Bug>

To look at location $20000

PPC1-Bug>M 0;DI <Return>
00000+Z0 3C600004 ADDIS R3,R0,$4? . <Return>
PPC1-Bug>

To look at location 0, override the automatic offset.

PPC1-Bug>M 0+Z7;DI <Return>
00000000 7FB143A6 MTSPR 273,R29? . <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-173

3

PA - Printer Attach
NOPA - Printer Detach

Command Input

PA [PORT]

NOPA [PORT]

Description

The PA command attaches a printer to the parallel or serial port that you
specify. Multiple printers may be attached. When the printer is attached,
everything that appears on the system console terminal is also echoed to
the attached port. If no port is specified, PA does not attach a port.

The NOPA command detaches a port. If no port is specified, NOPA
detaches all attached ports.

The specified port (PORT) must be configured and functional. When
attaching to a parallel port, the printer must be on-line and functioning.
Due to the nature of a parallel port, a potential hang condition could result
if the printer device is not handshaking correctly.

If the port is not currently assigned, PA displays a message. If NOPA is
attempted on a port that is not currently attached, a message is displayed.

The port being attached must already be configured using the PF
command. Refer to PF - Port Format NOPF - Port Detach on page
3-183.

Examples

Example 1: Attach logical unit $02.

PPC1-Bug>PA 2 <Return>
PPC1-Bug>

Example 2: Display current attached printers.

PPC1-Bug>PA <Return>
Printer $02 attached
PPC1-Bug>

3-174 Embedded Communications Computing Web Site

Debugger Commands

3

Example 3: Detach device at logical unit $02.

PPC1-Bug>NOPA 2 <Return>
Printer $02 detached
PPC1-Bug>

Example 4: Detach all possible attached printers.

PPC1-Bug>NOPA <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-175

3

PBOOT - Bootstrap Operating System

Command Input

PBOOT ; A

PBOOT ; V

PBOOT CLUN DLUN PARTITION [String] [;H]

Arguments

Options

CLUN Controller Logical Unit Number (CLUN).

The default is 00.

DLUN Device Logical Unit Number (DLUN).

The default is 00.

The CLUN/DLUN argument pair is the set of parameters that
the IOI command reports as attached/found/probed devices.
Refer to IOI - I/O Inquiry on page 3-92 for a complete
description.

PARTITION Partition Number

The default is 0, which specifies to boot from the first bootable
partition, starting with 1 and stepping through 4. You may also
select a partition (1 through 4).

String A string of characters which is displayed as a comment at boot
time.

A Auto Boot. This option, with no other options, permit the user to boot the
system using the Auto Boot routine, as it would be invoked from the
system start-up. This permits users to autoboot the system from an
interrupted system boot scenario.

V Verbose. This option is the same as A, with the addition of displaying boot
process messages to allow the user to examine the autoboot process.

3-176 Embedded Communications Computing Web Site

Debugger Commands

3

Description

The PBOOT command loads an operating system or control program from
a mass storage device (e.g., hard disk) into memory and give control to it.

Dependent upon the boot device type, the bootable device contains the
length and offset-into parameters of the boot program. Floppy diskette
devices and sequential access (i.e., streaming tape) devices do not contain
a partition table, other devices do.

Devices that require a partition table must contain at least one boot
partition to be bootable. These devices contain a boot record block (512
bytes in size) which contains the partition table. The format of the boot
record is an extension of the PC environment. The boot record is composed
of a PC compatibility block and a partition table. To support media
interchange, the PC compatibility block may contain an x86-type program.
The entries in the partition table identify the PowerPC Reference Platform
boot partition and its location in the media.

H Boot and halt. Control is not passed to the booted program, but back to the
debugger monitor.

This option is useful for examining and patching the booted program, and
or setting instruction breakpoints prior to execution. Once the interim
commands are invoked the user may simply use the GO command to pass
control to booted program.

PBOOT with the H option is analogous to the BH command in other
Motorola debuggers.

Debugger Commands

http://www.motorola.com/computer/literature 3-177

3

The layout of the boot record must be designed as shown in the Figure 3-
1. The first 446 bytes of the boot record contain a PC compatibility block,
the next four entries contain a partition table totaling 64 bytes, and last two
bytes contain a signature.

Figure 3-2 identifies the PowerPC Reference Platform partition table entry
by the $41 value in the system indicator field.

All other fields are ignored by the debugger except for the beginning sector
and number of sectors fields. Note that these are really not sector entities,
but logical block entities. The logical block size is 512 bytes, the same size
as the boot record.

0
PC Compatibility Block

in the Boot Record

0

$1BE
Partition Entry 1

446

$1CE
Partition Entry 2

462

$1DE
Partition Entry 3

478

$1EE
Partition Entry 4

494

$1FE
$55 $AA

510

512

Figure 3-1. Boot Record

3-178 Embedded Communications Computing Web Site

Debugger Commands

3

The 32-bit start RBA is zero-based. The 32-bit count RBA value is one-
based and indicates the number of 512-byte blocks. The count is always
specified in 512-byte blocks, even if the physical sectoring of the target
device is not 512-byte sectors.

The devices that are not required to contain a boot record (i.e., partition
table) are treated as if they have a single partition. Basically, the entire
media contents is the data within the partition.

Figure 3-3 identifies the layout of the $41 type partition and the process of
loading the image. The PC Compatibility Block in the boot partition may
contain x86-type program. When executed on an x86 machine, this
program displays a message indicating that this partition is not applicable
to the current system environment.

The second relative block in the boot partition contains the Entry Point
Offset, Load Image Length, Flag Field, OS_ID field, ASCII Partition
Name field, and the Reserved1 area. The 32-bit value Entry Point Offset
(little endian byte ordering) is the offset (into the image) of the entry point
of the PowerPC Reference Platform boot program. The Entry Point Offset
is used to allocate the Reserved1 space. The Reserved1 area from offset
554 to Entry Point - 1 is reserved for implementation specific data and
future expansion.

The 32-bit value Load Image Length (little endian byte ordering) is the
length, in bytes, of the load image. The Load Image Length specifies the
size of the data physically copied into the system RAM by the debugger.
Note, that the debugger can load the boot program image anywhere into
system RAM, the boot program is responsible for positioning.

Once the boot partition is located by using the boot record, the debugger
will typically:

partition begin boot ind head sector cyl

partition end sys ind head sector cyl

beginning sector 32-bit start RBA (zero-based) (LE)

number of sectors 32-bit RBA count (one-based) (LE)

Figure 3-2. PowerPC Reference Platform Partition Table Entry

Debugger Commands

http://www.motorola.com/computer/literature 3-179

3
PC Compatibility

Block

0

Entry Point Offset (LE)
512

Load Image Length (LE)
516

Flag Field
520

OS_ID
521

Partition Name
522

Reserved1
554

OS-Specific Field
(Optional)

1024

Code Section of the
Load Image

Reserved2

RBA_Count * 512

Figure 3-3. Layout of the $41-Type Partition

Load Image

Entry Point
(Code Aligned)

3-180 Embedded Communications Computing Web Site

Debugger Commands

3

1. Read into memory the second 512-byte block of the load image.

2. Determine the load image length, which runs to, but does not
include, the Reserved2 space.

3. Allocate a buffer in system RAM for the load image transfer (no
fixed location).

4. Transfer the remaining portion of the load image into system RAM
from the boot device (the Reserved2 space is not loaded).

After the load image has been loaded, the debugger transfers control to the
entry point of the loaded code. The state of the machine at this point is as
follows:

❏ Interrupts are masked (i.e., MPU.MSR.EE bit is set a 0).

❏ System I/O addresses are in the contiguous mode.

❏ The system is Big-Endian mode.

❏ The instruction cache is enabled (L1 only).

❏ MPU.GPR3 is set to the starting address of the residual data.

❏ MPU.GPR4 is set to the starting address of the load image.

❏ MPU.GPR5 is set to a zero.

Examples

Example 1: This example demonstrates a boot and halt scenario. The boot
device is an CDROM device, as observed by the IOI command output.

Note that in this example it was necessary to delimit the remaining
arguments to enable the H option. This delimiting of arguments specifies
to use the defaults for the corresponding argument.

Debugger Commands

http://www.motorola.com/computer/literature 3-181

3

PPC1-Bug>IOI <Return>
I/O Inquiry Status:
CLUN DLUN CNTRL-TYPE DADDR DTYPE RM Inquiry-Data
 0 0 NCR53C825 0 $00 N SEAGATE ST31200N 8630
 0 30 NCR53C825 3 $05 Y TOSHIBA CD-ROM XM-3401TA 1094
 1 0 PC8477 0 $00 Y <None>
PPC1-Bug>PBOOT 0 30,,,;H <Return>
Booting from: NCR53C825, Controller 0, Drive 30
Loading: Operating System

IPL loaded at: $00080000
IP =00080430 MSR =00003040 CR =00000000 FPSCR =00000000
R0 =00000000 R1 =03FA0000 R2 =00000000 R3 =00000000
R4 =00000000 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00000000 SPR9 =00000000
00080430 48000005 BL $00080434
PPC1-Bug>DS * <Return>
00080430 48000005 BL $00080434
00080434 7E8000A6 MFMSR R20
00080438 4C00012C ISYNC
0008043C 7E94A278 XOR R20,R20,R20
00080440 3A941040 ADDI R20,R20,$1040
00080444 7E800124 MTMSR R20
00080448 4C00012C ISYNC
0008044C 7E94A278 XOR R20,R20,R20
PPC1-Bug>AS 80438
00080438 4C00012C ISYNC ? sync
PPC1-Bug>GO <Return>
Effective address: 00080430
.
.
.

Example 2: This example demonstrates a boot from a direct-access device
(i.e., hard disk). The fourth partition was specified. The device in this
example does not contain a bootable fourth partition table entry.

PPC1-Bug>PBOOT 0 0 4 <Return>
Booting from: NCR53C825, Controller 0, Drive 0
Loading: Operating System

Partition Not Bootable
PPC1-Bug>

3-182 Embedded Communications Computing Web Site

Debugger Commands

3

Example 3: This example demonstrates a boot from a direct-access device
(i.e., hard disk). The default partition is used due to the lack of the
PARTITION argument.

PPC1-Bug>PBOOT 0 0 <Return>
Booting from: NCR53C825, Controller 0, Drive 0
Loading: Operating System

IPL loaded at: $00080000
.
.
.

The above example is equivalent of:

PPC1-Bug>PBOOT,,, <Return>
Booting from: NCR53C825, Controller 0, Drive 0
Loading: Operating System

IPL loaded at: $00080000
.
.
.

Example 4: This example demonstrates a boot and halt from the PC8477
Disk Controller (i.e., floppy disk controller).

PPC1-Bug>PBOOT 1 0,,,;H <Return>
Booting from: PC8477, Controller 1, Drive 0
Loading: Operating System

IPL loaded at: $00080000
IP =00080400 MSR =00003040 CR =00000000 FPSCR =00000000
R0 =00000000 R1 =03FA0000 R2 =00000000 R3 =00000000
R4 =00000000 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00000000 SPR9 =00000000
00080400 7C0000A6 MFMSR R0
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-183

3

PF - Port Format
NOPF - Port Detach

Command Input

PF [PORT]

NOPF [PORT]

Description

The PF command allows you to examine and change the serial
input/output environment. PF may be used to configure a port that is
already assigned or assign and configure a new port. PF supports PowerPC
board drivers and the ports on each.

PORT is the port to be assigned or configured. Without PORT specified,
PF displays a list of the current port assignments.

The NOPF command removes a port assignment. Serial ports “DEBUG”
(LUN 0), “HOST” (LUN 1), and “Console” (LUN dependent, “DEBUG”
LUN by default) are removable.

To assign or configure a port, invoke the command with the port number
(PORT). Assigning and configuring may be accomplished consecutively.
You are prompted to configure the port parameters. You may change the
displayed value by typing a new value, followed by the Return key. To
leave the field unaltered, press the Return key without typing a new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the fields. The special characters are:

V or v Go to the next field. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up to the previous field. This remains in effect until
changed by entering one of the other special characters.

= Re-open the same field

. Terminate the PF command, and return control to the debugger

3-184 Embedded Communications Computing Web Site

Debugger Commands

3

Any changes will remain in effect until a reset operation occurs, or another
PF execution. The reset operation, via the debugger, will set serial ports
“DEBUG” (LUN 0, port 0) and “HOST” (LUN 1, port 1) to the default
parameters. (Refer to Auto Boot in Chapter 1 for details on terminal setup.)

Note Only nine ports may be assigned at any given time. PORT must
be in the range 0 to $1F.

Listing Current Port Assignments

PF lists the names of the PowerPC board and port for each assigned port
number (LUN) when the command is invoked with the port number
omitted.

Example

PPC1-Bug>PF <Return>
Current port assignments: (Port #: Board name, Port name)
[00: MPC603PPC1- “DEBUG”] [01: MPC603PPC1- “HOST”]
Console = [00: MPC603PPC1- “DEBUG”]
PPC1-Bug>

Current port assignments: (Port #: Board name, Port name)
[00: PC16550- "DEBUG"] [01: PC16550- "HOST"]
Console = [00: PC16550- "DEBUG"]
PPC1-Bug>

Configuring a Port

These are the configurable parameters (these may vary depending on the
driver):

Port base address:

The base address of the port. This is useful for supporting PowerPC
boards with adjustable base addressing.

Baud rate [110,300,600,1200,2400,4800,9600,19200]?

The baud rate

Debugger Commands

http://www.motorola.com/computer/literature 3-185

3

Note If a number base is not specified, the default is decimal, not
hexadecimal.

Even, Odd, or No Parity [E,O,N] = N?

Character width [5,6,7,8] = 8?

Character width, in bits

Stop Bits [1,2] = 1?

The number of stop bits

Example

Change the number of stop bits to 2.

PPC1-Bug>PF 1 <Return>
Baud rate [110,300,600,1200,2400,4800,9600,19200] = 9600? <Return>
Even, Odd, or No Parity [E,O,N] = N? <Return>
Character width [5,6,7,8] = 8? <Return>
Stop Bits [1,2] = 1? 2 <Return>
Auto Xmit enable on CTS* [Y,N] = N? . <Return>
OK to proceed (y/n)? Y <Return>
PPC1-Bug>

Assigning a New Port

These are the configurable parameters (these may vary depending on the
driver):

Name of board?

E Even

O Odd

N Disabled

3-186 Embedded Communications Computing Web Site

Debugger Commands

3

The device driver. Press the Return key to see a list the currently
supported PowerPC drivers and ports. The controllers are:

Name of port?

The name of the port. The available boards are:

Port base address = $00000000?

The base address of the port

XON = $11=^Q?

XOFF = $13=^S?

Flow control (software handshake) characters (case sensitive). ASCII
control characters or hexadecimal values are accepted.

If the new port has not been configured, the interactive configuration mode
is entered (refer to Configuring a Port on page 3-184). If the new port has
been configured, the OK to proceed (y/n)? prompt appears.

PF does not initialize any hardware until you have responded with a Y to
prompt OK to proceed (y/n)?. Pressing the BREAK key on the
console any time prior to this step or responding with an N at the prompt
leaves the port unassigned.

VKIO VGA Keyboard I/O

PC16550 Asynchronous Communications

Z85C230 Serial Communications

PC87303 Parallel Printer

DEBUG Serial Port 1

HOST Serial Port 2

CPP Parallel Printer Port

Debugger Commands

http://www.motorola.com/computer/literature 3-187

3

Example

PPC1-Bug>PF 10 <Return>
Logical unit $10 unassigned
Name of board? <Return>
Boards and ports supported:
VKIO: DEBUG
PC16550: DEBUG, HOST
Z85C230: DEBUG, HOST
PC87303: CPP
Name of board? VKIO <Return>
Name of port? DEBUG <Return>
Port base address = $00000000? <Return>
XON = $11=^Q? <Return>
XOFF = $13=^S?. <Return>
OK to proceed (y/n)? Y <Return>
PPC1-Bug>

NOPF Port Detach

The NOPF command unassigns the port number (PORT argument). Only
one port may be unassigned at a time. Invoking NOPF without a port
number does not unassign any ports.

3-188 Embedded Communications Computing Web Site

Debugger Commands

3

PFLASH - Program FLASH Memory

Command Input

PFLASH SSADDR SEADDR DSADDR [IEADDR] [;[A|R] [X]]

PFLASH SSADDR:COUNT DSADDR [IEADDR] [;[B|W|L] [A|R] [X]]

Arguments

Options

SSADDR Source starting address of the binary image to program the
FLASH memory with

SEADDR Source ending address of the binary image to program the
FLASH memory with

DSADDR Destination starting address of the FLASH memory to program
the binary image to

COUNT Number of elements to program.

A colon (:) is required to indicate that the second argument is
COUNT instead of SEADDR.

IEADDR Instruction execution address (i.e., PC/IP). This address points to
a reset vector for MPC60x architectures.

B Byte

H Half-word

W Word

R Allow the automatic reset (local) of the hardware upon
completion of programming the FLASH Memory, only when the
programming is completed error free. Resetting is done only if
the board supports it.

A Allow the automatic reset (local) of the hardware upon
completion of programming the FLASH Memory. Resetting is
done only if the board supports it.

X Allow the FLASH Memory driver to always execute the passed
execution address, even on error. This option is valid only when
you specify the instruction execution address.

Debugger Commands

http://www.motorola.com/computer/literature 3-189

3

Description

The PFLASH command loads an application or program into Flash
memory. The command line arguments are checked (e.g., does the
destination range lie completely within the Flash memory?, are there
overlapping address spaces?, are the address arguments aligned?). If an
argument does not pass, an appropriate error message is displayed and
control is passed back to the monitor with the Flash memory contents
undisturbed.

Physically, PPCBug is contained in two socketed 32-pin PLCC Flash
memory devices that together provide 1MB ($00100000) of storage.
PPCBug uses the entire memory contained in the two devices. The
executable code is checksummed at every power-on or reset firmware
entry. The result is checked with a pre-calculated checksum contained in
the last 16-bit word of the Flash image.

The element size is determined by the size (B, W, or L) option. The default
B.

If the programming agent is the debugger and it is resident in the Flash
memory, it may have to download the Flash memory driver. The
downloaded driver uses the board’s system fail LED and NVRAM to
communicate programming errors. This hardware notification of a Flash
memory programming error is only necessary if you are reprogramming
the programming agent’s text and data space. Otherwise, errors are
communicated by means of the programming terminal (serial I/O).

Upon error free completion of the Flash memory programming, control is
passed back to the monitor. If the instruction execution address argument
is specified, control will be passed to this address. If the programming
agent is reprogrammed and the instruction execution address argument is
not specified, control remains within the Flash memory driver (do nothing,
wait for reset).

If the Flash memory driver was downloaded, messages are not displayed
on the terminal. If return from the downloaded driver is not possible, and
the instruction execution or the local reset option is not specified, upon
successful completion, the driver blinks the FAIL LED at the rate of once
per 1/2 second. Upon any error the driver illuminates the FAIL LED (no
blinking).

3-190 Embedded Communications Computing Web Site

Debugger Commands

3

If the Flash memory driver was not downloaded, one or more of the
following messages may be displayed on the terminal:

FLASH Memory PreProgramming Error: Address-Alignment
FLASH Memory PreProgramming Error: Address-Range
FLASH Memory Programming Complete
FLASH Memory Programming Error: Zero-Phase
FLASH Memory Programming Error: Erase-Phase
FLASH Memory Programming Error: Write-Phase

FLASH Memory Programming Error: Erase-Phase_Time-Out
FLASH Memory Programming Error: Write-Phase_Time-Out
FLASH Memory Programming Error: Verify-Phase

The “;r” option on the “pflash” command is most frequently used because
without this option the user does not know when the “pflash” command
function has completed. When the “;r” option is used on the “pflash”
command, it is important to remember that it uses the current setting from
the “RESET” command (i.e., the “warm/cold” selection from the
command.)

Note A full board reset must be done in order for the “pflash”
command to work correctly (i.e., that the “RESET” command
specifies a “COLD” reset.) If you have recently reset your board
with a warm reset - please make sure that you reexecute the
“RESET” command with the cold option prior to reflashing your
board with the PFLASH command (refer to the RESET
command for further details).

Example

The following is an example of programming the Flash memory with an
updated version of the debugger. The example assumes that the updated
version has been loaded into memory.

PPC1-Bug>BM FFF00000:100000/4 100000 <Return>
Effective address: FFF00000
Effective count : &1048576
Effective address: 00100000
PPC1-Bug>PFLASH 100000:100000 FFF00000;R <Return>
Source Starting/Ending Addresses =00100000/001FFFFF
Destination Starting/Ending Addresses =FFF00000/FFFFFFFF
Number of Effective Bytes =00100000 (&1048576)

Debugger Commands

http://www.motorola.com/computer/literature 3-191

3

Program FLASH Memory (Y/N)? Y <Return>

The reset option R was utilized to restart the debugger. If it was not used,
the user would not know when the programming is complete.

3-192 Embedded Communications Computing Web Site

Debugger Commands

3

PS - Put RTC into Power Save Mode

Command Input

PS

Description

The PS command turns off the oscillator in the RTC chip. The PowerPC
board is shipped with the RTC oscillator stopped to minimize current drain
from the onchip battery. Normal cold start of the board with the PPCBug
FLASH devices installed gives the RTC a “kick start” to begin oscillation.

Use SET command to restart the clock.

Example

PPC1-Bug>PS <Return>
(Clock is in Battery Save Mode)
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-193

3

RB - ROMboot Enable
NORB - ROMboot Disable

Command Input

RB[;V]

NORB

Description

The RB command invokes the search for and booting from a ROMboot
routine encoded in FLASH memory on the board. However, the routine
can be stored in other memory locations, if configured to do so with the
ENV command. Refer also to ROMboot in Chapter 1.

The V option enables verbose mode operation.

NORB disables the search for a ROMboot routine, but does not change the
options chosen.

The default condition is with the ROMboot function disabled.

Examples

Example 1: For this example, assume the existence of a valid ROMboot
routine at $10000.

PPC1-Bug>RB <Return>
ROMboot in progress... To abort hit <BREAK>
FRI SEP 15 11:50:21.00 1994
PPC1-Bug>

Example 2: For this example, assume the existence of a valid ROMboot
routine at $10000.

PPC1-Bug>RB;V <Return>
ROMboot in progress... To abort hit <BREAK>
Direct Adr: FFC00000 FFC00000: Searching for ROMboot Module at: FFC00000
ROM : FFC00000 FFC7FFFC: Searching for ROMboot Module at: FFC7E000
Local RAM : 00000000 00FFFFFC: Searching for ROMboot Module at: 00010000
Executing ROMboot Module "TEST" at 00010000
FRI SEP 15 11:50:21.00 1989
PPC1-Bug>

3-194 Embedded Communications Computing Web Site

Debugger Commands

3

Example 3:

PPC1-Bug> NORB <Return>
ROM boot disabled
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-195

3

RD - Register Display

Command Input

RD [{[+|-|=] [DNAME] [/]}{[+|-|=] [REG1[-REG2]] [/]}] [;E]

Arguments

Description

The RD command displays the register state associated with the target
program (refer to the GO command). The instruction pointed to by the
target IP is disassembled and displayed also. Internally, a register mask
specifies which registers are displayed when RD is executed.

At reset time, this mask is set to display the default (DEF) registers only.
This register mask can be changed with the RD command. The optional
arguments allow you to enable or disable the display of any register or
group of registers. This is useful for showing only the registers of interest,
minimizing unnecessary data on the screen; and also in saving screen
space.

The E option elects an internal bank of registers that is updated upon every
exception, regardless of whether the exception occurred while executing
target code or the debugger itself. This option allows you to get a glimpse
of what was happening when a debugger command caused an exception.
These registers are not accessible using other debugger commands.

Use the following characters with the arguments:

DNAME MPU for Microprocessor Unit,
DEF for default

REG1 First register in a range of registers

REG2 Last register in a range of registers

+ The device or register range is to be added

- The device or register range is to be removed, except when used
between two register names. In this case, it indicates a register
range.

3-196 Embedded Communications Computing Web Site

Debugger Commands

3
Note the following when specifying any arguments in the command line:

❏ The +, -, or = qualifier applies to the next register range only.

❏ If no qualifier is specified, a + is assumed, even for the default.

❏ All device names should appear before any register names.

❏ The command line arguments are parsed from left to right, with each
argument being processed after parsing; thus the sequence in which
qualifiers and registers are organized has an impact on the resultant
register mask.

❏ When specifying a register range, REG1 and REG2 do not have to
be of the same class.

❏ The register mask used by RD is also used by all exception handler
routines, including the trace and breakpoint exception handlers.

The MPU registers, in ordering sequence, are (total of 117 registers):

= The device or register range is to be set. This character followed by
DEF in the DNAME argument restores the register mask to select
those registers originally displayed.

/ A required delimiter between device names and register ranges

IP Instruction Pointer

MSR Machine State Register

CR Condition Codes Register

FPSCR Floating Point Status/Control Register

R0-R31 General Purpose (32)

SR0-SR15 Segment Registers (16)

SPR0-SPR1023 Special Purpose Registers (33)

FR0-FR31 Floating Point Data Registers (32)

Debugger Commands

http://www.motorola.com/computer/literature 3-197

3

Examples

Example 1: Default display - MPU subset (also called out by DEF):

PPC1-Bug>RD <Return>
IP =00040010 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =22EDB280 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Example 2: Change the mask to display all MPU registers.

PPC1-Bug>RD +MPU <Return>
IP =00040010 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =22EDB280 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SR0 =60000000 SR1 =00000000 SR2 =00000000 SR3 =00000000
SR4 =00000000 SR5 =00000000 SR6 =00000000 SR7 =00000000
SR8 =E7F00008 SR9 =E7F00009 SR10 =00000000 SR11 =00000000
SR12 =00000000 SR13 =00000000 SR14 =00000000 SR15 =60000000
SPR0 =00000000 SPR1 =00000000 SPR4 =00AD6BA7 SPR5 =22EE2A00
SPR8 =00020014 SPR9 =00000000 SPR18 =40000000 SPR19 =FFEC0000
SPR20 =FFEC0000 SPR21 =FFEC0000 SPR22 =16A30500 SPR25 =00000000
SPR26 =00040010 SPR27 =00083030 SPR272 =00004210 SPR273 =00000000
SPR274 =00000000 SPR275 =00000000 SPR282 =00083030 SPR286 =00083030
SPR528 =0000000E SPR529 =0000007F SPR530 =FFF0000F SPR531 =FFF00047
SPR532 =00000000 SPR533 =00000000 SPR534 =00000000 SPR535 =00000000
SPR1008=80810080 SPR1009=00000000 SPR1010=00000000 SPR1013=00000000
SPR1023=00000000
FR0 =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010
FR1 =0_407_0000000000000= 2.5600000000000000_E+0002
FR2 =0_40C_3880000000000= 1.0000000000000000_E+0004
FR3 =1_3FF_0000000000000=-1.0000000000000000_E+0000
FR4 =0_400_8000000000000= 3.0000000000000000_E+0000
FR5 =0_000_0000000000000= 0.0000000000000000_E+0000

3-198 Embedded Communications Computing Web Site

Debugger Commands

3

FR6 =0_000_0000000000000= 0.0000000000000000_E+0000
FR7 =0_000_0000000000000= 0.0000000000000000_E+0000
FR8 =0_000_0000000000000= 0.0000000000000000_E+0000
FR9 =0_000_0000000000000= 0.0000000000000000_E+0000
FR10 =0_000_0000000000000= 0.0000000000000000_E+0000
FR11 =0_000_0000000000000= 0.0000000000000000_E+0000
FR12 =0_000_0000000000000= 0.0000000000000000_E+0000
FR13 =0_000_0000000000000= 0.0000000000000000_E+0000
FR14 =0_000_0000000000000= 0.0000000000000000_E+0000
FR15 =0_000_0000000000000= 0.0000000000000000_E+0000
FR16 =0_000_0000000000000= 0.0000000000000000_E+0000
FR17 =0_000_0000000000000= 0.0000000000000000_E+0000
FR18 =0_000_0000000000000= 0.0000000000000000_E+0000
FR19 =0_000_0000000000000= 0.0000000000000000_E+0000
FR20 =0_000_0000000000000= 0.0000000000000000_E+0000
FR21 =0_000_0000000000000= 0.0000000000000000_E+0000
FR22 =0_000_0000000000000= 0.0000000000000000_E+0000
FR23 =0_000_0000000000000= 0.0000000000000000_E+0000
FR24 =0_000_0000000000000= 0.0000000000000000_E+0000
FR25 =0_000_0000000000000= 0.0000000000000000_E+0000
FR26 =0_000_0000000000000= 0.0000000000000000_E+0000
FR27 =0_000_0000000000000= 0.0000000000000000_E+0000
FR28 =0_000_0000000000000= 0.0000000000000000_E+0000
FR29 =0_000_0000000000000= 0.0000000000000000_E+0000
FR30 =0_000_0000000000000= 0.0000000000000000_E+0000
FR31 =0_000_0000000000000= 0.0000000000000000_E+0000
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Afterwards, every time RD is executed, all MPU registers are displayed.

To change the mask and disable the display of MPU registers, execute the
following command:

PPC1-Bug>RD -MPU <Return>
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-199

3

Example 3: Add only FR0 and FR1 to the original default display.

PPC1-Bug>RD FR0/FR1 <Return>
IP =00040010 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =22EDB280 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
FR0 =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010
FR1 =0_407_0000000000000= 2.5600000000000000_E+0002
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Example 4: Remove R10-R21 and R29 from the previous display.

PPC1-Bug>RD -R10-R21/-R29 <Return>
IP =00040010 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =22EDB280 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
FR0 =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010
FR1 =0_407_0000000000000= 2.5600000000000000_E+0002
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Example 5: Set the display to R2 and R31 only. (Note that this sequence
sets the display to R2 only, then adds register R31 to the display.)

PPC1-Bug>RD =R2/R31 <Return>
R2 =FFF0178C R31 =00000000
00040010 4E800020 BCLR 20,0
PPC1-Bug>

3-200 Embedded Communications Computing Web Site

Debugger Commands

3

Example 6: Restore the display to the original set.

PPC1-Bug>RD =DEF <Return>
IP =00040010 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =22EDB280 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-201

3

REMOTE - Remote

Command Input

REMOTE

Description

The REMOTE command initiates a service call through a remote modem.
This command duplicates the Initiate Service Call option of the System
Menu, which is assessed through the MENU command.

Refer to MENU - System Menu on page 3-129 and to Appendix B, System
Menu for information on service calls.

3-202 Embedded Communications Computing Web Site

Debugger Commands

3

RESET - Cold/Warm Reset

Command Input

RESET

Description

The RESET command allows you to specify the level of reset operation
that will be in effect when a RESET exception is detected by the
processor. A reset exception can be generated by pressing the RESET
switch on the debugger host.

Two RESET levels are available:

Use the “warm” RESET option with caution, since using this option will
prevent the execution of the full board initialization on *ALL* RESETs
until this option is modified to “cold”.

Control may passed to the boot routine, System Menu, or the diagnostics
prompt, according to the ENV command parameters.

Example

Set to “cold” start.

PPC1-Bug>RESET <Return>
Cold/Warm Reset [C,W] = C? c <Return>
Execute Local SCSI Bus Reset [Y,N] = N? <Return>
Execute Local (CPU) Reset [Y,N] = N? Y<Return>

Copyright Motorola Inc. 1988 - 1995, All Rights Reserved

PPC1Bug Debugger/Diagnostics Release Version x.x - mm/dd/yy
COLD Start

Local Memory Found =nnnnnnnn (&nnnnnnnn)

Cold This is the standard level of operation, and is the one defaulted to
on power-up. In this mode, all the static variables are initialized
every time a reset is done.

Warm In this mode, all the static variables are preserved when a reset
exception occurs. This is convenient for keeping breakpoints,
offset register values, the target register state, and any other static
variables in the system.

Debugger Commands

http://www.motorola.com/computer/literature 3-203

3

MPU Clock Speed =xxMhz

BUS Clock Speed =xxMhz

PPC1-Bug>

3-204 Embedded Communications Computing Web Site

Debugger Commands

3

RL - Read Loop

Command Input

RL ADDR[;B|H|W]

Options

Description

The RL command establishes an infinite loop consisting of a processor
load instruction targeted to the given address and of the given length (the
default data size is word), followed by a branch instruction back to the
load. Hence the address is accessed repeatedly in rapid succession.

The read loop can only be terminated by an external occurrence, such as
an interrupt (usually an abort), a reset from the RST switch, or power
cycle.

B Byte

H Half-word

W Word

Debugger Commands

http://www.motorola.com/computer/literature 3-205

3

RM - Register Modify

Command Input

RM [REG]

Description

The RM command allows you to display and change the target registers.

REG is the target register. If REG is not specified, all the registers are
displayed in sequence.

When invoked without options, the RM command enters an interactive
mode where the register contents currently in effect are displayed one-at-
a-time on the console for the operator to examine. You may change the
displayed value by typing a new value, followed by the Return key. To
leave the register unaltered, press the Return key without typing a new
value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the registers. The special characters are:

Examples

Example 1: Modify register R5 and exit.

PPC1-Bug>RM R5 <Return>
R5 =12345678? ABCDEF. <Return>
PPC1-Bug>

V or v Open the next register. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous register

= Re-open the same register

. Terminate the RM command, and return control to the
debugger

3-206 Embedded Communications Computing Web Site

Debugger Commands

3

Example 2: Modify register FR0 and view the results.

PPC1-Bug>RM FR0 <Return>
FR0 =0_384_4ED67D467D9BF= 1.2300000000000004_E-0037? 1.677E-10 <Return>
FR1 =0_000_0000000000000= 0.0000000000000000_E+0000? &256 <Return>
FR2 =0_000_0000000000000= 0.0000000000000000_E+0000? 10000 <Return>
FR3 =0_000_0000000000000= 0.0000000000000000_E+0000? -1 <Return>
FR4 =0_000_0000000000000= 0.0000000000000000_E+0000? &1+&2. <Return>
PPC1-Bug>RM FR0 <Return>
FR0 =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010? <Return>
FR1 =0_407_0000000000000= 2.5600000000000000_E+0002? <Return>
FR2 =0_40C_3880000000000= 1.0000000000000000_E+0004? <Return>
FR3 =1_3FF_0000000000000=-1.0000000000000000_E+0000? <Return>
FR4 =0_400_8000000000000= 3.0000000000000000_E+0000? . <Return>
PPC1-Bug>

Example 3: List all registers.

PPC1-Bug>RM <Return>
IP =00040010? <Return>
MSR =00003030? <Return>
CR =00000020? <Return>
FPSCR =00000000? <Return>
R0 =00000000? <Return>
R1 =00020000? <Return>
R2 =FFF0178C? <Return>
R3 =00041000? <Return>
...

R29 =00000000? <Return>
R30 =00000000? <Return>
R31 =00000000? <Return>
SR0 =60000000? <Return>
SR1 =00000000? <Return>
SR2 =00000000? <Return>
...

SR13 =00000000? <Return>
SR14 =00000000? <Return>
SR15 =60000000? <Return>
SPR0 =00000000? <Return>
SPR1 =00000000? <Return>
SPR4 =00AD6BA7? <Return>
SPR5 =22EE2A00? <Return>
SPR8 =00020014? <Return>
SPR9 =00000000? <Return>
SPR18 =40000000? <Return>
SPR19 =FFEC0000? <Return>

Debugger Commands

http://www.motorola.com/computer/literature 3-207

3

SPR20 =FFEC0000? <Return>
SPR21 =FFEC0000? <Return>
SPR22 =16A30500? <Return>
SPR25 =00000000? <Return>
SPR26 =00040010? <Return>
SPR27 =00083030? <Return>
SPR272 =00004210? <Return>
SPR273 =00000000? <Return>
SPR274 =00000000? <Return>
SPR275 =00000000? <Return>
SPR282 =00083030? <Return>
SPR286 =00083030? <Return>
SPR528 =0000000E? <Return>
SPR529 =0000007F? <Return>
SPR530 =FFF0000F? <Return>
SPR531 =FFF00047? <Return>
SPR532 =00000000? <Return>
SPR533 =00000000? <Return>
SPR534 =00000000? <Return>
SPR535 =00000000? <Return>
SPR1008=80810080? <Return>
SPR1009=00000000? <Return>
SPR1010=00000000? <Return>
SPR1013=00000000? <Return>
SPR1023=00000000? <Return>
FR0 =0_3DE_70C6B50A527AC= 1.6770000000000003_E-0010? <Return>
FR1 =0_407_0000000000000= 2.5600000000000000_E+0002? <Return>
FR2 =0_40C_3880000000000= 1.0000000000000000_E+0004? <Return>
...

FR29 =0_000_0000000000000= 0.0000000000000000_E+0000? <Return>
FR30 =0_000_0000000000000= 0.0000000000000000_E+0000? <Return>
FR31 =0_000_0000000000000= 0.0000000000000000_E+0000? <Return>
CPUIEN =0000FEFB? . <Return>
PPC1-Bug>

3-208 Embedded Communications Computing Web Site

Debugger Commands

3

RS - Register Set

Command Input

RS REG [EXP|ADDR]

Description

The RS command allows you to change the data in the specified target
register. It works in essentially the same way as the RM command.

REG is the target register.

When invoked without options, the RM command enters an interactive
mode where the register contents currently in effect are displayed one-at-
a-time. You may change the displayed value by typing a new value
followed by the Return key. To leave the register unchanged, press the
Return key without typing a new value.

You may also enter a special character, either at the prompt or after typing
new data, for scrolling through the registers. The special characters are:

Examples

Example 1: Change register R5.

PPC1-Bug>RS R5 12345678 <Return>
R5 =12345678
PPC1-Bug>

Example 2: Examine register R5.

PPC1-Bug>RS R5 <Return>
R5 =12345678
PPC1-Bug>

Example 3: Examine register FR0.

V or v Open the next register. This is the default, and remains in effect
until changed by entering one of the other special characters.

^ Back up and open the previous register

= Re-open the same register

. Terminate the RS command, and return control to the
debugger

Debugger Commands

http://www.motorola.com/computer/literature 3-209

3

PPC1-Bug>RS FR0 <Return>
FR0 =0_44D_09F7E57C92CC4= 3.1399999999999997_E+0023
PPC1-Bug>

Example 4: Set register FR0 contents.

PPC1-Bug>RS FR0 1.23E-37 <Return>
FR0 =0_384_4ED67D467D9BF= 1.2300000000000004_E-0037
PPC1-Bug>

3-210 Embedded Communications Computing Web Site

Debugger Commands

3

RUN - MPU Execution/Status

Note This command is for multi-processor boards only.

Command Input

RUN [MPU#]

Description

The RUN command allows you to inquire of the BUG the current state of
each of the processors. The command also allows you to switch an idle
processor to the current processor (processor executing the debugger). The
MPU# argument depends on your configuration and idle processors
present. If your configuration is less than a two processor setup, an error
message will be displayed instead.

Examples

Example 1:

PPC1-Bug>run (current state of all possible processors)
MPU0 : MASTER
MPU1 : IDLE
PPC1-Bug>

Example 2:

PPC1-Bug>run 1 (switch to processor #1 as master/current)
PPC1-Bug>

PPC1-Bug>run (current state of all possible processors)
MPU0 : IDLE
MPU1 : MASTER
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-211

3

Descriptions of all possible states:

Note The debugger only permits one processor to execute the debugger
monitor. This is achieve by placing a semaphore prior to the
exception handler access. The stalled processor will wait
indefinitely. The current/master processor must be idled, forked,
or executed (GO, GT, GN, GD commands) before the stalled
processor is serviced.

State Description

IDLE Processor is idle (can be forked).

UNKNOWN Processor never became idle from start up (power-
up/reset).

EXECUTING TARGET Processor has been forked to target code.

ERROR Illegal state.

EXCEPTION PROCESSING PENDING Processor is stalled at the exception handler
semaphore (see NOTE).

3-212 Embedded Communications Computing Web Site

Debugger Commands

3

SD - Switch Directories

Command Input

SD

Description

The SD command allows you to switch from the debugger directory to the
diagnostic directory or from the diagnostic directory to the debugger
directory. The prompt indicates the current directory (PPCx-Bug> for the
debugger, and PPCx-Diag> for the diagnostics).

The commands in the current directory (the directory that you are in at the
particular time) may be listed using the HE command.

The debugger commands are available from either directory, but the
diagnostic commands are only available from the diagnostic directory.

Examples

Example 1: Switch from the debugger directory to the diagnostic
directory.

PPC1-Bug>SD <Return>
PPC1-Diag>

Example 2: Switch from the diagnostic directory to the debugger
directory.

PPC1-Diag>SD <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-213

3

SET - Set Time and Date

Command Input

SET mmddyyhhmm

Description

The SET command starts the RTC and sets the time and date. The
argument, mmddyyhhmm, represents two digits each of month, day, year,
hour, and minutes. Hours should be in Military (24-hour) form.

mmddyyhhmm is validated to ensure that it corresponds to a legal date and
time, and if valid, the time-of-day clock is updated to correspond, and a
formatted date and time message is displayed as a check. The SET
command may be repeated to correct the date and time.

The clock must be running in order for the network I/O commands (i.e.,
NAB, NBH, NBO, NIOC, NIOP, and NPING) to work properly. Use
TIME ;L to see if the clock is running. Use the SET command to start and
initialize the clock.

Use the TIME command to display the current date and time of day (refer
to TIME - Display Time and Date on page 3-228).

Example

Set the date and time:

PPC1-Bug>SET 05151405 <Return>
MON MAY 15 14:05:00.00 1995
PPC1-Bug>

3-214 Embedded Communications Computing Web Site

Debugger Commands

3

SROM - SROM Examine/Modify

Command Input

SROM [offset][;E|D|I]

Options:

E Ethernet (Default)
D Drawbridge, PCI-PCI bridge
I I2C-bus controller

Description:

The SROM command allows the user to examine and modify the contents
of the network SROM attached to the Ethernet chips (see Appendix H for
supported controllers).

When the command is invoked, the user will be prompted with choices of
base addresses of the chips which have attached SROMs. Upon selection
of the device, the SROM contents is read into a buffer and the user allowed
to view and edit the buffer. If changes are made to the buffer contents, the
user is prompted whether to allow the SROM to be updated or not. The
SROM command also automatically calculates the required SROM
checksum and writes it to the SROM if allowed by the user.

The optional offset argument allows the user to specify what offset within
the buffer to begin viewing/editing at. If omitted, a default value of 0 is
used for offset.

The SROM command may be called with an option to specify which
SROM is to be read. Option ‘E’ specifies the Ethernet SROM. Option ‘D’
specifies the SROM for the DEC21554 non-transparent PCI-PCI bridge,
sometimes known as the Drawbridge. Option ‘I’ specifies the I2C bus
controller.

If no option is specified the SROM Command will default to the Ethernet
SROM.

When the command is entered at the BUG prompt, an opportunity is given
to edit the SROM for each device present on any attached PMCspan board,
as well as the base board.

Debugger Commands

http://www.motorola.com/computer/literature 3-215

3

!
Caution

The network SROM is programmed at the factory to reflect specific board
configuration parameters. The Ethernet interface relies on the accuracy of
this information to operate properly under both BUG and any installed
Operating Systems. Consequently, do not modify the SROM contents
unless there is a well understood reason for doing so.

Examples:

Example 1: To simply view the first 26 bytes of SROM contents and not
change any entry:

PPC1-Bug>srom

Device Address =$80804000 (N/Y)? y
Reading SROM into Local Buffer.....
$00 (&000) 5710?
$02 (&002) 0000?
$04 (&004) 0000?
$06 (&006) 0000?
$08 (&008) 0000?
$0A (&010) 0000?
$0C (&012) 0000?
$0E (&014) 0000?
$10 (&016) AF00?
$12 (&018) 0301?
$14 (&020) 0800?
$16 (&022) 3E25?
$18 (&024) 3157? .
PPC1-Bug>

3-216 Embedded Communications Computing Web Site

Debugger Commands

3

Example 2: Assume the proper Ethernet address was 08003E263157
instead of 08003E253157. It could be modified as follows:

PPC1-Bug>srom

Device Address =$80804000 (N/Y)? y
Reading SROM into Local Buffer.....
$00 (&000) 5710?
$02 (&002) 0000?
$04 (&004) 0000?
$06 (&006) 0000?
$08 (&008) 0000?
$0A (&010) 0000?
$0C (&012) 0000?
$0E (&014) 0000?
$10 (&016) AF00?
$12 (&018) 0301?
$14 (&020) 0800?
$16 (&022) 3E25? 3e26.

Update SROM (Y/N)? y

Calculate CRC (Y/N)? y
Writing SROM from Local Buffer.....
Verifying SROM with Local Buffer...
PPC1-Bug>

Example 3: To simply view the byte at offset $10 of the Ethernet
controller.

PPCx-Bug>SROM 10 ;e<Return>

Device Address =$00007000 (N/Y)?y
Reading SROM into Local Buffer.....
$10 (&016) AF00?.
PPCx-Bug>

Example 4: To simply view the byte at offset $1C of the Drawbridge (PCI
to PCI controller).

PPC1-Bug>SROM 1C ;d<Return>

Device Address =$0000A000 (N/Y)?y
Reading SROM into Local Buffer....
$1C (&028) 00?.
PPCx-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-217

3

Example 5: To simply view the byte at offset $20 of the I2C device at
address A8.

PPCx-Bug>SROM 20 ;i<Return>

Device Address =$A0(N/Y)?n

Device Address = $A8(N/Y)?y
Reading SROM into Local Buffer....
$20 (&032)20?.
PPCx-Bug>

Example 6: To view the bytes starting at offset $1E and change the value
at offset $20 of the I2C device at address A0 from ‘AA’ to ‘FF’.

PPCx-Bug>SROM 1E ;i<Return>

Device Address =$A0 (N/Y)?y
Reading SROM into Local Buffer.....
$1E (&030) FF?<Return>
$1F (&031) FF?<Return>
$20 (&032) AA? FF
$21 (&033) FF?.

Update SROM (Y/N)?y
Writing SROM from Local Buffer....
Verifying SROM with Local Buffer....
PPCx-Bug>

3-218 Embedded Communications Computing Web Site

Debugger Commands

3

SYM - Symbol Table Attach
NOSYM - Symbol Table Detach

Command Input

SYM [ADDR]

NOSYM

Description

The SYM command attaches a symbol table to the debugger. Once a
symbol table has been attached, all displays of physical addresses are first
looked up in the symbol table to see if the address is in range of any of the
symbols (symbol data). If the address is in range, it is displayed with the
corresponding symbol name and offset (if any) from the symbol’s base
address (symbol data). In addition to the display, any command line input
that supports an address as an argument can now take a symbol name for
the address argument. The address argument is first looked up in the
symbol table to see if it matches any of the addresses (symbol data) before
conversion takes place.

It is your responsibility to load the symbol table into memory. This
command is analogous to the system call .SYMBOLTA. Refer to Chapter
5 for the description of the system call.

ADDR is the location where the symbol table begins in memory. The
default address of the symbol table is your default instruction pointer. The
symbol table must be word-aligned.

The Number of Entries in Symbol Table field governs the size of the
symbol table. The Symbol Data field must be word-aligned and the
Symbol Name field must consist only of printable characters (ASCII codes
$21 through $7E). The symbol name may be terminated with a null ($00)
character. The symbol data fields must be ascending in value (sorted
numerically).

Debugger Commands

http://www.motorola.com/computer/literature 3-219

3

The format of the symbol table is shown below:

Upon execution of the command, the debugger performs a sanity check on
the symbol table with the above rules. The symbol table is not attached if
the check fails.

The NOSYM command allows you to detach a symbol table from the
debugger.

This command is analogous to the system call .SYMBOLTD. Refer to
Chapter 5 for the description of the system call.

Examples

Example 1: Attach symbol table at address $0001E000

PPC1-Bug>SYM 1E000 <Return>
PPC1-Bug>

Example 2:

PPC1-Bug>MD 0 <Return>
_ldchar+$0000 00010203 04050607 08090A0B 0C0D0E0F
_ldchar+$0010 10111213 14151617 18191A1B 1C1D1E1F
PPC1-Bug>

Example 3:

PPC1-Bug>MD _LDCHAR <RETUrn>
_ldchar+$0000 00010203 04050607 08090A0B 0C0D0E0F
_ldchar+$0010 10111213 14151617 18191A1B 1C1D1E1F
PPC1-Bug>

Offset Field Description

$00 Number of entries in symbol table (32 bit word).

$04 Symbol Data - Entry #0 (32 bit word)

$08 Symbol Name - Entry #0 (24 bytes)

$20 Symbol Data - Entry #1 (32 bit word)

$24 Symbol Name - Entry #1 (24 bytes)

$XX Table End (dependent on the number of entries)

3-220 Embedded Communications Computing Web Site

Debugger Commands

3

Example 4:

PPC1-Bug>MD _LDCHAR+4 <Return>
_ldchar+$0004 04050607 08090A0B 0C0D0E0F 10111213
_ldchar+$0014 14151617 18191A1B 1C1D1E1F 20212223 !"#
PPC1-Bug>

Example 5:

PPC1-Bug>BF _LDCHAR:8 0 <Return>
Effective address: _ldchar+$0000
Effective count : &32
PPC1-Bug>MD _LDCHAR <Return>
_ldchar+$0000 00000000 00000000 00000000 00000000
_ldchar+$0010 00000000 00000000 00000000 00000000
PPC1-Bug>

Example 6: Detach symbol table.

PPC1-Bug>NOSYM <Return>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-221

3

SYMS - Symbol Table Display/Search

Command Input

SYMS [symbol-name]|[;S]

Description

The SYMS command displays the attached symbol table or search the
attached symbol table.

Specify a symbol-name to search the symbol table for a particular symbol.
Enter a character string in symbol-name to search the symbol table for all
of symbols that begin with the character string.

The S option displays the attached symbol table in ascending ASCII order.

A symbol table must be attached for this command to execute. Refer to
SYM - Symbol Table Attach NOSYM - Symbol Table Detach on page
3-218.

Examples

Example 1: Display the attached symbol table.

PPC1-Bug>SYMS <Return>
_stchar 00001020
_ldchar 000028A0
_sizmemory 00004930
PPC1-Bug>

Example 2: Search the attached symbol table for symbol _ldchar.

PPC1-Bug>SYMS _LDCHAR <Return>
_ldchar 000028A0
PPC1-Bug>

Example 3: Search the attached symbol table for all symbols starting with
_s.

PPC1-Bug>SYMS _S <Return>
_stchar 00001020
_sizmemory 00004930
PPC1-Bug>

3-222 Embedded Communications Computing Web Site

Debugger Commands

3

Example 4: Display the attached symbol table in ascending ASCII order.

PPC1-Bug>SYMS;S <Return>
_ldchar 000028A0
_sizmemory 00004930
_stchar 00001020
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-223

3

T - Trace

Command Input

T [COUNT]

Description

The T command executes one instruction at a time, displaying the target
state after execution. T starts tracing at the address in the target IP.

The optional COUNT argument (which defaults to 1) specifies the number
of instructions to be traced before returning control to the debugger.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands. Instruction memory must be writable. In all cases, if a
breakpoint with 0 count is encountered, control is returned to the debugger.

The trace functions are implemented by inserting traps in the code.
Therefore, the code must be writable and uncached for tracing to be
effective.

Example

The following program resides at location $30000, and breakpoint is
specified at location $30014.

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000 ADDIS R5,R0,$0
00030004 2B040000 CMPLI CRF6,0,R4,$0
00030008 419A0014 BC 12,26,$0003001C
0003000C 98A30000 STB R5,$0(R3) ($00041000)
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
00030014 38630001 ADDI R3,R3,$1
00030018 4BFFFFEC B $00030004
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

PPC1-Bug>BR <Return>
BREAKPOINTS
00030014
PPC1-Bug>

Initialize IP and R3, R4:

3-224 Embedded Communications Computing Web Site

Debugger Commands

3

PPC1-Bug>RM IP <Return>
IP =0000E000 ? 30000.<Return>
PPC1-Bug>

PPC1-Bug>RM R3 <Return>
R3 =00000000 ? 41000 <Return>
R4 =00000000 ? 100. <Return>
PPC1-Bug>

Display target registers and trace one instruction:

PPC1-Bug>RD <Return>
IP =00030000 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030000 3CA00000 ADDIS R5,R0,$0
PPC1-Bug>

PPC1-Bug>T <Return>
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030004 2B040000 CMPLI CRF6,0,R4,$0
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-225

3

Trace next instruction:

PPC1-Bug> <Return>
IP =00030008 MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030008 419A0014 BC 12,26,$0003001C
PPC1-Bug>

Trace the next two instructions:

PPC1-Bug>T 2 <Return>
IP =0003000C MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
0003000C 98A30000 STB R5,$0(R3) ($00041000)
IP =00030010 MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
PPC1-Bug>

3-226 Embedded Communications Computing Web Site

Debugger Commands

3

Trace the next instruction:

PPC1-Bug>T <Return>
At Breakpoint
IP =00030014 MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =000000FF R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030014 38630001 ADDI R3,R3,$1
PPC1-Bug>

Note that in the breakpoint was reached (the message At Breakpoint
is displayed).

Debugger Commands

http://www.motorola.com/computer/literature 3-227

3

TA - Terminal Attach

Command Input

TA [PORT]

Description

The TA command assigns a serial port to be the console. The port specified
must already be assigned (refer to PF - Port Format NOPF - Port Detach
on page 3-183).

No prompt appears unless the selected port is already the console. All
keyboard exchanges and displays are now made through port. This
remains in effect until another TA command is issued. Upon reset, the port
is initialized to the value stored in non-volatile RAM.

If no port is specified, TA restores the console to port selected at power-
up. The prompt will appear at the connected terminal (port 0).

Examples

Example 1: Select port 1 (logical unit #01) as console.

PPC1-Bug>TA 1 <Return>
Console = [01: PPC1- “HOST”]
Update Non-Volatile RAM (Y/N)?

Example 2: Restore console to port specified in non-volatile RAM.

PPC1-Bug>TA <Return>
Console = [00: PPC1- "DEBUG"]
Update Non-Volatile RAM (Y/N)?
PPC1-Bug>

3-228 Embedded Communications Computing Web Site

Debugger Commands

3

TIME - Display Time and Date

Command Input

TIME [;L]

Description

The TIME command displays the date and time to the console in ASCII
characters.

Use the SET command to initialize the time-of-day clock (refer to SET - Set
Time and Date on page 3-213).

Option L causes the date and time display to be updated continuously. An
abort or break returns you to the debugger prompt. Use TIME ;L to see if
the clock is running.

Example

Display the date and time:

PPC1-Bug>TIME <Return>
MON MAY 15 14:05:32.70 1995
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-229

3

TM - Transparent Mode

Command Input

TM [PORT] [ESCAPE]

Description

The TM command connects the current console serial port to the an other
port, allowing you to communicate with a host computer. The two ports
remain connected until the escape character (the character used to exit the
transparent mode) is received by the console port. The escape character is
not transmitted to the host, and at power-up or reset it is initialized to $01
(CTRL- a).

The optional PORT argument allows you to specify which port is the host
port. If omitted, port 1 is assumed.

The ports do not have to be at the same baud rate, but the console port baud
rate should be equal to or greater than the host port baud rate for reliable
operation. To change the baud rate use the PF (Port Format) command.

The optional ESCAPE argument allows you to specify the character to be
used as the escape character. This character may be either a Control
character (e.g., CTRL-a), or an ASCII character. The ESCAPE argument
can be entered in one of three formats:

If the port number is omitted and the ESCAPE argument is entered as a
numeric value, precede the ESCAPE argument with a comma to
distinguish it from a port number.

ESCAPE Format Sets escape to . . . Example

Hexadecimal CTRL and the
equivalent ASCII
character

$63 sets escape to
CTRL-c.

^ and a character CTRL and the
character

^c sets escape to CTRL-
c.

‘ and a character the character ‘c sets escape to c.

3-230 Embedded Communications Computing Web Site

Debugger Commands

3

TM without any arguments displays the current escape character, which
you must enter in order to return to the debugger.

Examples

Example 1: Display the escape character.

PPC1-Bug>TM <Return>
Escape character: $01=^A
.
.
.
<Control-A>
PPC1-Bug>

Example 2: In this example, the default port of 1 is specified by the NULL
PORT argument, and the escape character is set to CTRL-g.

PPC1-Bug>TM,,^g <Return>
Escape character: $07=^G
.
.
.
<Ctrl-g>
PPC1-Bug>

Example 3: In this example, $03 is specified as the port logical unit and
the escape character is set to CTRL-b.

PPC1-Bug>TM 3 2 <Return>
Escape character: $02=^B
.
.
.
<Ctrl-b>
PPC1-Bug>

Debugger Commands

http://www.motorola.com/computer/literature 3-231

3

TT - Trace to Temporary Breakpoint

Command Input

TT ADDR

Description

The TT command sets a temporary breakpoint at the specified address and
traces until a breakpoint with 0 count is encountered. The temporary
breakpoint is then removed (TT is analogous to the GT command) and
control is returned to the debugger. Tracing starts at the target IP address.

The message At Breakpoint is displayed when a breakpoint is
reached.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands. Instruction memory must be writable. If a breakpoint with 0
count is encountered, control is returned to the debugger.

The trace functions are implemented by inserting traps in the code.
Therefore, the code must be writable and uncached for tracing to be
effective.

Example

The following program resides at location $30000, and breakpoint is
specified at location $30014.

PPC1-Bug>DS 30000 <Return>
00030000 3CA00000 ADDIS R5,R0,$0
00030004 2B040000 CMPLI CRF6,0,R4,$0
00030008 419A0014 BC 12,26,$0003001C
0003000C 98A30000 STB R5,$0(R3) ($00041000)
00030010 3884FFFF ADDI R4,R4,$FFFFFFFF
00030014 38630001 ADDI R3,R3,$1
00030018 4BFFFFEC B $00030004
0003001C 4E800020 BCLR 20,0
PPC1-Bug>

PPC1-Bug>BR <Return>
BREAKPOINTS
00030014
PPC1-Bug>

3-232 Embedded Communications Computing Web Site

Debugger Commands

3

Initialize IP and R3, R4:

PPC1-Bug>RM IP <Return>
IP =0000E000 ? 30000.<Return>
PPC1-Bug>

PPC1-Bug>RM R3 <Return>
R3 =00000000 ? 41000 <Return>
R4 =00000000 ? 100. <Return>
PPC1-Bug>

Display target registers and trace to temporary breakpoint:

PPC1-Bug>RD <Return>
IP =00030000 MSR =00003030 CR =00000020 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =FFF0178C R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00020014 SPR9 =00000000
00030000 3CA00000 ADDIS R5,R0,$0
PPC1-Bug>

PPC1-Bug>TT 30008 <Return>
IP =00030004 MSR =00003030 CR =00000000 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =00000000 R3 =00041000
R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00000000 SPR9 =00000000
00030004 2B040000 CMPLI CRF6,0,R4,$0
At Breakpoint
IP =00030008 MSR =00003030 CR =00000040 FPSCR =00000000
R0 =00000000 R1 =00020000 R2 =00000000 R3 =00041000

Debugger Commands

http://www.motorola.com/computer/literature 3-233

3

R4 =00000100 R5 =00000000 R6 =00000000 R7 =00000000
R8 =00000000 R9 =00000000 R10 =00000000 R11 =00000000
R12 =00000000 R13 =00000000 R14 =00000000 R15 =00000000
R16 =00000000 R17 =00000000 R18 =00000000 R19 =00000000
R20 =00000000 R21 =00000000 R22 =00000000 R23 =00000000
R24 =00000000 R25 =00000000 R26 =00000000 R27 =00000000
R28 =00000000 R29 =00000000 R30 =00000000 R31 =00000000
SPR0 =00000000 SPR1 =00000000 SPR8 =00000000 SPR9 =00000000
00030008 419A0014 BC 12,26,$0003001C
PPC1-Bug>

3-234 Embedded Communications Computing Web Site

Debugger Commands

3

VE - Verify S-Records Against Memory

Command Input

VE [PORT] [ADDR] [;[X] [C]] [=text]

Options

Description

The VE command compares data to the an S-record that is in memory.
This command is similar to the LO command, except that the data is
compared to memory instead of being stored to memory.

The VE command accepts serial data from a host system in the form of a
file of Motorola S-records and compares it to data already in the memory.
If the data does not compare, then you are alerted via information sent to
the terminal screen.

If PORT is not specified but ADDR is specified, insert two commas in front
of ADDR. If this number is omitted, port 1 is assumed.

ADDR is an offset address which is to be added to the address contained in
the address field of each record. This causes the records to be compared to
memory at different locations than would normally occur. The contents of
the automatic offset register are not added to the S-record addresses. (For
information on S-records, refer to Appendix D)

The optional text argument is a command that is sent to the host before the
debugger begins to look for S-records at the host port. This allows you to
send a command to the host device to initiate the download. This text
should not be delimited by any quote marks, and should begin immediately

C Ignore checksum. A checksum for the data contained within an S-
Record is calculated as the S-Record is read in at the port. Normally,
this calculated checksum is compared to the checksum contained within
the S-Record and if the compare fails an error message is sent to the
screen on completion of the download. If this option is selected, then the
comparison is not made.

X Echo the S-records to your terminal as they are read in at the host port

Debugger Commands

http://www.motorola.com/computer/literature 3-235

3

following the equals sign, and terminate with the carriage return. If the host
is operating full duplex, the string is also echoed back to the host port by
the host and appears on your terminal screen.

In order to accommodate host systems that echo all received characters, the
above-mentioned text string is sent to the host one character at a time and
characters received from the host are read one at a time. After the entire
command has been sent to the host, VE keeps looking for an <LF>
character from the host, signifying the end of the echoed command. No
data records are processed until this <LF> is received. If the host system
does not echo characters, VE still keeps looking for an <LF> character
before data records are processed. For this reason, it is required in
situations where the host system does not echo characters, that the first
record transferred by the host system be a header record. The header record
is not used, but the <LF> after the header record serves to break VE out of
the loop so that data records are processed.

During a verify operation, data from an S-record is compared to memory
beginning with the address contained in the S-record address field (plus the
offset address, if it was specified). If the verification fails, then the non-
comparing record is set aside until the verify is complete and then it is
printed out to the screen. If three non-comparing records are encountered
in the course of a verify operation, then the command is aborted.

If a non-hexadecimal character is encountered within the data field of a
data record, then the part of the record which had been received up to that
time is printed to the screen and the PPCBug error handler is invoked to
point to the faulty character.

As mentioned, if the embedded checksum of a record does not agree with
the checksum calculated by PPCBug and if the checksum comparison has
not been disabled via the C option, then an error condition exists. A
message is output stating the address of the record (as obtained from the
address field of the record), the calculated checksum, and the checksum
read with the record. A copy of the record is also output. This is a fatal
error and causes the command to abort.

Example

For the example, assume that the program has been compiled and linked to
start at address 65040000.

3-236 Embedded Communications Computing Web Site

Debugger Commands

3

 .file “test.s”
#
retrieve contents of the RTC registers
#
 .toc
T.FD: .tc FD.4330000080000000[tc] ,1127219200,-2147483648
 .toc
T..test:
 .tc ..test[tc], test[ds]
T..LDATA:
 .tc ..LDATA[tc], .LDATA
T..LRDATA:
 .tc ..LRDATA[tc], .LRDATA
#
 .align 2
 .globl test[ds]
 .csect test[ds]
 .long .test[pr], TOC[tc0], 0
 .globl .test[pr]
 .csect .test[pr]
.test:
 mfspr r4,4 # load RTC upper register
 stw r4,0(r3) # write to caller’s buffer
 mfspr r4,5 # load RTC lower register
 stw r4,4(r3) # write to caller’s buffer
 bclr 0x14,0x0 # return to the caller
FE_MOT_RESVD.test:
 .csect [rw]
 .align 2
.LDATA:
 .csect [rw]
 .align 2
.LRDATA:

Then the program is converted into an S-record file named test.mx as
follows:

S325650400007C8402A6908300007C8502A6908300044E80002000000000650400006504002412
S30D65040020000000000000000069
S7056504000091

This file is downloaded into memory at address $40000. The program may
be examined in memory using the MD command.

Debugger Commands

http://www.motorola.com/computer/literature 3-237

3

PPC1-Bug>MD 40000:5;DI <Return>
00040000 7C8402A6 MFSPR R4,4
00040004 90830000 STW R4,$0(R3) ($00041000)
00040008 7C8502A6 MFSPR R4,5
0004000C 90830004 STW R4,$4(R3) ($00041004)
00040010 4E800020 BCLR 20,0
PPC1-Bug>

Suppose you want to make sure that the program has not been destroyed in
memory. The VE command is used to perform a verification.

PPC1-Bug>VE ,,-65000000;X=cat test.mx <Return>
cat test.mx
S325650400007C8402A6908300007C8502A6908300044E80002000000000650400006504002412
S30D65040020000000000000000069
S7056504000091
Verify passes.
PPC1-Bug>

The verification passes. The program stored in memory was the same as
that in the S-record file that had been downloaded.

Now change the program in memory and perform the verification again.

PPC1-Bug>MM 40004;H <Return>
00040004 9083? 9082. <Return>
PPC1-Bug>

PPC1-Bug>VE ,,-65000000;X=cat test.mx <Return>
cat test.mx
S325650400007C8402A69083
S-RECORD Data Verification error:
Address =00040005
Expected data =83
Actual data =82
S-RECORD=
S325650400007C8402A69083
PPC1-Bug>

The byte which was changed in memory does not compare with the
corresponding byte in the S-record.

3-238 Embedded Communications Computing Web Site

Debugger Commands

3

VER - Revision/Version Display

Command Input

VER [;E]

Description

The VER command displays the various revisions and versions of the
host’s hardware subsystems. The command displays the revision and date
of PPCBug that is running.

The E option displays more detail, such as PCI configuration headers for
each device, which can be used for components/subsystems that may have
lengthy data arrays associated with their identification. Such a data array
would be displayed as a memory dump.

Refer to the appropriate device manual to translate the physical
revision/version to its logical revision/version.

Examples

Example 1:

PPC1-Bug>VER <Return>
Debugger/Diagnostics Type/Revision..................=PPC1/x.x
Debugger/Diagnostics Revision Date..................=XX/XX/XX RMXX
MicroProcessor Version/Revision.....................=0008/0201
MicroProcessor Internal Clock Speed (MHZ)...........=233
MicroProcessor External Clock Speed (MHZ)...........=67
CPU Type/System ID/CPU Subtype......................=E0/FC/00
PCI Bus Clock Speed (MHZ)...........................=33
Local Memory Size...................................=02000000 (32MB)
L2 Cache (External).................................=NONE
L2 Cache (P0-In-Line)...............................=1MB
L2 Cache (P1-In-Line)...............................=N/A
Super I/O Device Offset/ID Revision.................=02E/C0/7
PCI Bus Bridge Device ID/Revision...................=00011057/21
PCI Device (80800800) ID/Revision...................=05861106/33
PCI Function 00/0B/1 (00005900) ID/Revision.........=05711106/06

Debugger Commands

http://www.motorola.com/computer/literature 3-239

3

PCI Function 00/0B/2 (00005A00) ID/Revision.........=30381106/02
PCI Function 00/0B/3 (00005B00) ID/Revision.........=30401106/02
PCI Function 00/0E/0 (00007000) ID/Revision.........=00091011/20
PCI Function 00/10/0 (00008000) ID/Revision.........=00B81013/00
PCI Function 00/14/0 (0000A000) ID/Revision.........=00261011/01
PCI Function 01/0D/0 (00016800) ID/Revision.........=70789004/03
PCI Function 01/0F/0 (00017800) ID/Revision.........=00211011/02
PCI Function 02/08/0 (00024000) ID/Revision.........=00031000/02
PCI Function 02/0D/0 (00026800) ID/Revision.........=0091011/22
PPC1-Bug>

Example 2:

PPC1-Bug>VER ;E <Return>
Debugger/Diagnostics Type/Revision..................=PPC1/X.X
Debugger/Diagnostics Revision Date..................=XX/XX/XX RMXX
MicroProcessor Version/Revision.....................=0008/0201
MicroProcessor Internal Clock Speed (MHZ)...........=233
MicroProcessor External Clock Speed (MHZ)...........=67
CPU Type/System ID/CPU Subtype......................=E0/FC/00
PCI Bus Clock Speed (MHZ)...........................=33
Local Memory Size...................................=02000000 (32MB)
L2 Cache (External).................................=NONE
L2 Cache (P0-In-Line)...............................=1MB
L2 Cache (P1-In-Line)...............................=N/A
Super I/O Device Offset/ID Revision.................=02E/C0/7
PCI Bus Bridge Device ID/Revision...................=48011057/01
PCI Bus Bridge Device Registers
Class: Built before Class definitions Subclass: Non VGA device
Base+$0000 48 01 10 57 22 80 00 06 06 00 00 01 00 00 00 00 H..W”..........
Base+$0010 00 00 00 01 3C 00 00 00 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0080 80 00 81 FE 80 00 00 F3 81 FF 81 FF 80 00 00 E3
Base+$0090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$00A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$00B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$00C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$00D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$00E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$00F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Press "RETURN" to continue <Return>

3-240 Embedded Communications Computing Web Site

Debugger Commands

3

PCI Function 00/0B/0 (0005800) ID/Revision..........=05861106/33
Class:Bridge Device Subclass: PCI/ISA Bridge
Base+$0000 05 86 11 06 02 00 00 07 06 01 00 33 00 80 00 00 3.
Base+$0010 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Press "RETURN" to continue <Return>

PCI Function 00/0B/1 (00005900) ID/Revision..........=05711106/06
Class:Mass Storage Controller Subclass: IDE Controller
Base+$0000 05 71 11 06 02 80 00 85 01 01 8F 06 00 00 00 00 H..W...........
Base+$0010 00 00 FF F9 00 00 FF F5 00 00 FF E9 00 00 FF E5................
Base+$0020 00 00 FF D1 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 0E

Press "RETURN" to continue <Return>

PCI Function 00/0B/2 (00005A00) ID/Revision.........=30381106/02
Class: Serial Bus Controller Subclass: Universal Serial Bus
Base+$0000 30 38 11 06 02 00 00 05 0C 03 00 02 00 00 16 08 08.."..........
Base+$0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..@............
Base+$0020 00 00 FF A1 00 00 00 00 00 00 00 00 12 34 09 254%
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 04 0B

Press "RETURN" to continue <Return>

PCI Function 00/0B/3 (00005B00) ID/Revision..........=30401106/02
Class: Built before Class definitions Subclass: Non VGA device

Base+$0000 30 40 11 06 02 80 00 00 00 00 00 02 00 00 00 00 0@.............
Base+$0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Press "RETURN" to continue <Return>

PCI Function 00/0E/0 (00007000) ID/Revision..........=00091011/20
Class: Network Controller Subclass: Ethernet Controller

Base+$0000 00 09 10 11 02 80 00 07 02 00 00 20 00 00 00 00
Base+$0010 3F 7F FF 81 3B FF FF 80 00 00 00 00 00 00 00 00 .?.............
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 5D 7C 00 00 00 00 00 00 00 00 00 00 28 14 01 0A]|..............

Press "RETURN" to continue <Return>

PCI Function 00/10/0 (00008000) ID/Revision..........=008B1013/00
Class: Display Controller Subclass:VGA-compatible Controller

Base+$0000 00 B8 10 13 02 00 00 00 03 00 00 00 00 00 00 00
Base+$0010 FF 00 00 08 FF FF FF E1 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 05

Press "RETURN" to continue <Return>

Debugger Commands

http://www.motorola.com/computer/literature 3-241

3

PCI Function 00/14/0 (0000A000) ID/Revision..........=00261011/01
Class: Bridge Device Subclass:PCI/PCI Bridge

Base+$0000 00 26 10 11 02 80 00 07 06 04 00 01 00 01 80 08 .&.............
Base+$0010 00 00 00 00 00 00 00 00 80 02 01 00 22 80 E1 D1
Base+$0020 3B E0 3B D0 00 01 FF F1 FF FF FF FF 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Press "RETURN" to continue <Return>

PCI Function 00/0D/0 (00016800) ID/Revision..........=70789004/03
Class: Mass Storage Controller Subclass: SCSI Controller

Base+$0000 70 78 90 04 02 80 00 07 01 00 00 03 00 00 00 08 px.............
Base+$0010 00 00 EF 01 3B EF F0 00 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 08 08 01 FF

Press "RETURN" to continue <Return>

PCI Function 01/0F/0 (00017800) ID/Revision..........=00211011/02
Class: Bridge Device Subclass: PCI/PCI Bridge

Base+$0000 00 21 10 11 02 80 00 07 06 04 00 02 00 01 80 08 .!.............
Base+$0010 00 00 00 00 00 00 00 00 80 02 02 01 02 80 D0 D0
Base+$0020 3B D0 3B D0 00 00 FF F0 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Press "RETURN" to continue <Return>

PCI Function 02/08/0 (00024000) ID/Revision..........=00031000/02
Class: Mass Storage Controller Subclass: SCSI Controller

Base+$0000 00 03 10 00 02 00 00 07 01 00 00 02 00 00 80 00
Base+$0010 00 00 DF 01 3B DF FF 00 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 FF

Press "RETURN" to continue <Return>

PCI Function 02/0D/0 (00026800) ID/Revision..........=00091011/22
Class: Network Controller Subclass: Ethernet Controller

Base+$0000 00 09 10 11 02 80 00 07 02 00 00 22 00 00 00 08”...
Base+$0010 00 00 DE 81 3B DF FE 80 00 00 00 00 00 00 00 00
Base+$0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Base+$0030 40 00 00 00 00 00 00 00 00 00 00 00 28 14 01 FF @...............

Press "RETURN" to continue <Return>

PPC1-Bug>

3-242 Embedded Communications Computing Web Site

Debugger Commands

3

WL - Write Loop

Command Input

WL ADDR:DATA[;B|H|W]

Options

Description

The WL command establishes an infinite loop consisting of a processor
store instruction, DATA, targeted to the given ADDR and of the given
length, followed by a branch instruction back to the store. The defined
DATA is therefore stored repeatedly into the defined location in rapid
succession.

The write loop can only be terminated by an external occurrence, such as
an interrupt (usually an abort), a reset from the RESET switch, or power
cycle.

B Byte

H Half-word

W Word

4-1

44One-Line Assembler/
Disassembler

Introduction
The PPCBug one-line assembler is an interactive assembler/editor in
which the source program is not saved. Each source line is translated into
the proper PowerPC machine language code and is stored in memory on a
line-by-line basis at the time of entry. In order to display an instruction, the
machine code is disassembled, and the instruction mnemonic and operands
are displayed. All valid PowerPC instructions are translated.

The assembler is effectively a subset of an operating system assembler. It
has some limitations as compared with the operating system assembler,
such as not allowing line numbers, pseudo ops, instruction macros, and
label. However, it is a powerful tool for creating, modifying, and
debugging code written in PowerPC assembly language.

PowerPC Assembly Language
The symbolic language used to code source programs for processing by the
assembler is PowerPC assembly language. This language is a collection of
mnemonics representing:

❏ Operations

– (PowerPC machine-instruction operation codes, Directives
(pseudo-ops))

– Operators

❏ Special symbols

4-2 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4

Machine-Instruction Operation Codes

Refer to PowerPC 603 RISC Microprocessor User’s Manual, PowerPC
604 RISC Microprocessor User’s Manual, or the PowerPC MCP750 RISC
Microprocessor User’s Manual for information on the mnemonic machine
instruction operation codes.

Directives

The PPCBug one-line assembler recognizes only two mnemonic
directives: to define a word constant (WORD), and system call
(SYSCALL). These directives are used to define data within the program,
and to make calls on PPCBug utilities. Refer to WORD Define Constant
Directive on page 4-9 and SYSCALL System Call Directive on page 4-10
for further details.

Comparison with the Standard Assembler
There are several major differences between the PPCBug one-line
assembler and the PowerPC Standard Assembler. The PowerPC assembler
is a two-pass assembler that processes an entire program as a unit, while
the PPCBug one-line assembler processes each line of a program as an
individual unit. Because of this, the capabilities of the PPCBug one-line
assembler are more restricted, as described below:

❏ Label and line numbers are not used. Labels are used to reference
other lines and locations in a program. The one-line assembler has
no knowledge of other lines and, therefore, cannot make the
required association between a label and the label definition located
on a separate line.

❏ Source lines are not saved. In order to read back a program after it
has been entered, the machine code is disassembled and then
displayed as mnemonic and operands.

❏ Only two directives (WORD and SYSCALL) are accepted.

❏ No macro operation capability is included.

Source Program Coding

http://www.motorola.com/computer/literature 4-3

4

❏ No conditional assembly is used.

❏ Several symbols recognized by the resident assembler are not
included in the PPCBug one-line assembler character set.

❏ Depending on the context, the ampersand (&) has multiple
meanings to the resident assembler (refer to Addressing Modes on
page 4-8). The & is either the AND logical operator or a decimal
number prefix.

❏ Depending on the context, the asterisk (*) has multiple meanings to
the resident assembler (refer to Addressing Modes on page 4-8). The
* is either the multiplication operator or the current value of the
program counter.

Although functional differences exist between the two assemblers, the
PPCBug one-line assembler is a true subset of the resident assembler. The
format and syntax used with the PPCBug one-line assembler are
acceptable to the resident assembler except as described above.

Source Program Coding
A source program is a sequence of source statements arranged in a logical
way to perform a predetermined task. Each source statement occupies a
line and must be either an executable instruction, or a WORD assembler
directive. Each source statement follows a consistent source line format.

Source Line Format

Each source statement is a combination of operation and, as required,
operand fields. Line numbers, labels, and comments are not used.

Operation Field

Because there is no label field, the operation field may begin in the first
available column. It may also follow one or more spaces. Entries can
consist of one of two categories:

❏ Operation codes which correspond to the MPC60x instruction set.

4-4 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4

❏ Define Constant directive -- WORD is recognized to define a
constant in a word location.

The size of the data field affected by an instruction is determined by the
data size codes. Some instructions and directives can operate on more than
one data size. For these operations, the data size code must be specified or
a default size applicable to that instruction will be assumed. The size code
need not be specified if only one data size is permitted by the operation.
Refer to the PowerPC 603 RISC Microprocessor User’s Manual, the
PowerPC 604 RISC Microprocessor User’s Manual, or the PowerPC
MPC750 RISC Microprocessor User’s Manual section on Instructions for
a definition of allowable size codes.

The data size code is not permitted, however, when the instruction or
directive does not have a data size attribute.

Operand Field

If present, the operand field follows the operation field and is separated
from the operation field by at least one space. When two or more operand
subfields appear within a statement, they must be separated by a comma.

Disassembled Source Line

The disassembled source line may not look identical to the source line
entered. The disassembler makes a decision on how it interprets the
numbers used. If the number is an offset from a register, it is treated as a
signed hexadecimal offset. Otherwise, it is treated as a straight unsigned
hexadecimal.

Mnemonics and Delimiters

The assembler recognizes all PowerPC instruction mnemonics.

Source Program Coding

http://www.motorola.com/computer/literature 4-5

4

Numbers are recognized as binary, octal, decimal, and hexadecimal, with
hexadecimal the default case. Numbers may be represented only as
integers; floating point representations are not supported. The following
formats are acceptable:

An ASCII string is made up of one or more ASCII characters enclosed by
apostrophes (’ ’). ASCII strings are right-justified and zero-filled (if
necessary), whether stored or used as immediate operands.

The following register mnemonics are recognized/referenced by the
assembler/disassembler:

Pseudo-Registers:

Main Processor Registers:

Note that the processor registers that are not listed here are still accessible,
but instead of the register being denoted by a name, it is denoted by a
number with a specific instruction mnemonic.

Decimal a string of decimal digits (0 through 9) preceded by
an ampersand (&)

For example &12334 or -&987654321

Hexadecimal a string of hexadecimal digits (0 through 9, A
through F) preceded by an optional dollar sign ($).
For example, $AFE5

Z0-Z7 User Offset Registers - These are only recognized
during the assembly/disassembly of target addresses
(branch instructions).

R0-R31 General Purpose Registers

FR0-FR31 Floating Point Unit Data Registers

CRB0-CRB31 Condition Register Bit Field (CR/FPSCR)

CRF0-CRF7 Condition Register Field (FPSCR)

4-6 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4

Instructions

The following is a list of the instruction fields and their default number
bases:

CRBA Decimal

CRBB Decimal

BD Signed Hexadecimal

CRFD Decimal

CRFS Decimal

BI Decimal

BO Decimal

CRBD Decimal

D Signed Hexadecimal

DS Signed Hexadecimal

FM Hexadecimal

FRA Decimal

FRB Decimal

FRC Decimal

FRS Decimal

FRD Decimal

CRM Hexadecimal

L Decimal

LI Signed Hexadecimal

MB Decimal

ME Decimal

NB Decimal

RA Decimal

RB Decimal

RS Decimal

Source Program Coding

http://www.motorola.com/computer/literature 4-7

4

The assembly/disassembly format of the instruction mnemonics and
operands follow the syntax specified in the PowerPC 603 RISC
Microprocessor User’s Manual or PowerPC 604 RISC Microprocessor
User’s Manual. The required fields are in boldface type, and the variable
fields are not, fields being one or more characters in length.

Character Set

The character set recognized by the PPCBug one-line assembler is a subset
of ASCII, and these are listed as follows:

RD Decimal

SH Decimal

SIMM Signed Hexadecimal

SPR Decimal

TO Decimal

IMM Decimal

UIMM Hexadecimal

Letters A through Z (uppercase and lowercase)

Integers 0 through 9

Arithmetic operators: + - * / << >> ! & % ^

Parentheses ()

Characters used as special prefixes:

dollar sign ($) specifies a hexadecimal number

ampersand (&) specifies a decimal number

at sign (@) specifies an octal number

percent sign(%) specifies a binary number

apostrophe (‘) specifies an ASCII literal character string

Separating characters:

space

comma (,)

4-8 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4
Addressing Modes

Effective address modes, combined with operation codes, define the
particular function to be performed by a given instruction. Effective
addressing and data organization are described in detail in the section on
Addressing Modes and Instruction Set in the PowerPC 603 RISC
Microprocessor User’s Manual or PowerPC 604 RISC Microprocessor
User’s Manual.

You may use an expression in any numeric field of these addressing
modes. The assembler has a built-in expression evaluator. It supports the
following operand types:

Allowed operators are:

period (.)

slash (/)

dash (-)

* (asterisk); indicates the current instruction pointer value

Binary numbers %10

Octal numbers @765 . . 0

Decimal numbers &987 . . 0

Hexadecimal numbers $FED . . 0

String literals ’foo’

Offset registers Z0 - Z7

Instruction pointer *

Addition + (plus)

Subtraction - (minus)

Multiply * (asterisk)

Divide / (slash)

Shift left << (left angle brackets)

Source Program Coding

http://www.motorola.com/computer/literature 4-9

4

The order of evaluation is strictly left to right with no precedence granted
to some operators over others. The only exception to this is when you force
the order of precedence through the use of parenthesis.

The order of parsing algebraic expressions is:

OPERAND OPERATOR OPERAND OPERATOR...

with a possible left or right parenthesis.

The parsing order allows the assembler to properly interpret characters.
For example, the “*” which represents both multiply and instruction
pointer, is interpreted as:

WORD Define Constant Directive
The format for the WORD directive is:

WORD 32-bit-operand

The function of this directive is to define a constant in memory. The
WORD directive can have only one operand (32-bit value) which can
contain the actual value (decimal, hexadecimal, or ASCII). Alternatively,
the operand can be an expression which can be assigned a numeric value
by the assembler. An ASCII string is recognized when characters are
enclosed inside single quotes (' '). Each character (seven bits) is assigned

Shift right >> (right angle brackets)

Bitwise OR ! (exclamation mark)

Bitwise AND & (ampersand)

Modulus % (percent)

Exponential ^ (circumflex)

One’s Complement ~ (tilde)

*** IP * IP

+ IP + IP

2** 2 * IP

*&&16 IP AND &16

4-10 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4

to a byte of memory, with the eighth bit (MSB) always equal to zero. If
only one byte is entered, the byte is right justified. Any number of ASCII
characters may be entered for each WORD directive, and the characters are
right justified, but truncation occurs after four characters.

An ASCII string which contains spaces may not be used as an argument to
the WORD directive, even if the string is enclosed inside single quotes. In
this case, the mm command may be used in place of the assembler’s
WORD directive. Note that to use mm, the one-line assembler must be
exited.

The following example illustrates the Assembler Error which will occur if
the user attempts to enter a string containing spaces using the WORD
directive. Following the error is an example of the use of the mm
command to put the string into memory instead.

PPC1-Bug>as 80000

user enters WORD ’abcd’, which works fine

00080000 61626364 ORI R2,R11,$6364

user enters WORD ’ab d’, which is invalid

00080004 00000000 WORD $00000000? WORD ’ab d’
Assembler Error: Operand Conversion

exit the one-line assembler

00080004 00000000 WORD $00000000? .

use mm command instead

PPC1-Bug>mm 80004
00080004 00000000? ’ab d’
00080008 00000000? .
verify this using md command

PPC1-Bug>md 80000:4
00080000 61626364 61622064 00000000 00000000 abcdab d........

SYSCALL System Call Directive
The function of this directive is to aid you in making the appropriate
system call entry to the debugger system call routines. The format for this
directive is:

SYSCALL <.ROUTINE>

Entering and Modifying Source Programs

http://www.motorola.com/computer/literature 4-11

4

This is assembled as:

ADDI R10,R0,$XXXX

SC

Where $XXXX is the 16-bit code for the system call routine.

Refer to Chapter 5, System Calls, for information on the system call routines.

Entering and Modifying Source Programs
User programs are entered into the memory using the one-line assembler/
disassembler. The program is entered in assembly language statements on
a line-by-line basis. The source code is not saved as it is converted
immediately to machine code upon entry. This imposes several restrictions
on the type of source line that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not
allowed. The assembler has no means to store the associated values of the
symbols and labels in lookup tables. This forces the programmer to use
memory addresses and to enter data directly rather than use labels.

Also, editing is accomplished by retyping the entire new source line. Lines
can be added or deleted by moving a block of memory data to free up or
delete the appropriate number of locations (refer to the BM command in
Chapter 3, Debugger Commands).

Invoking the Assembler/Disassembler
Use either the MM command or the AS command for program entry and
modification.

MM ADDR ;DI

or

AS ADDR

When either the MM or AS command is used, the memory contents at the
specified location are disassembled and displayed. A new or modified line
can be entered if desired. The disassembled line can be a PowerPC

4-12 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4

instruction or a WORD directive. If the disassembler recognizes a valid
form of some instruction, the instruction will be returned; if not (random
data occurs), the WORD $XXXXXXXX (always hexadecimal) is
returned. Because the disassembler gives precedence to instructions, a
word of data that corresponds to a valid instruction will be returned as the
instruction.

Entering a Source Line
A new source line is entered immediately following the disassembled line,
using the format discussed in the section on Source Line Format:

PPC1-Bug>AS 20000 <CR>
00020000 3C600004 ADDIS R3,R0,$4? ORI R3,R0,4 <CR>

When the carriage return is entered terminating the line, the old source line
is erased from the terminal screen, the new line is assembled and
displayed, and the next instruction in memory is disassembled and
displayed.

00020000 60030004 ORI R3,R0,$4
00020004 60631000 ORI R4,R4,$1000? <Return>

If a printer is being used, port 0 should be reconfigured as the printer port
(hardcopy mode) for proper operation (refer to the PF command in
Chapter 3). In this case, the above example would look as follows:

PPC1-Bug>AS 20000 <Return>
00020000 3C600004 ADDIS R3,R0,$4? ORI R3,R0,4 <Return>
00020000 60030004 ORI R3,R0,$4
00020004 60631000 ORI R4,R4,$1000? <CR>

Another program line can now be entered. Program entry continues in like
manner until all lines have been entered.

Enter a period to exit either the MM or AS command.

If an error is encountered during assembly of the new line, an error
message will be displayed. The location being accessed is redisplayed.

PPC1-Bug>AS 30000 <CR>
00030000 3CA00000 ADDIS R5,R0,$0? ORU R5,R0,1 <Return>
Assembler Error: Unknown Mnemonic
00030000 3CA00000 ADDIS R5,R0,$0?

Entering and Modifying Source Programs

http://www.motorola.com/computer/literature 4-13

4

Entering Branch Operands
In the case of forward branches, the absolute address of the destination
may not be known as the program is being entered. You may temporarily
enter an asterisk (*) for branch to self in order to reserve space. After the
actual address is discovered, the line containing the branch instruction can
be re-entered using the correct value.

Branch operands are interpreted as signed hexadecimal numbers.

Assembler Output/Program Listings

Obtain a listing of the program with either the MD command or DS
command.

MD ADDR[:COUNT | ADDR] ;DI

or

DS ADDR[:COUNT | ADDR]

Both MD and DS commands require the starting address to be entered in
the command line. When the MD command is invoked with the DI option,
the number of instructions disassembled and displayed is equal to the line
count. The line count parameter is optional and defaults to the eight
instructions displayed.

To obtain a hardcopy listing of a program, use the PA (Printer Attach)
command to activate the printer port, and then use MD to display the
listing on the terminal and print it on the printer.

Note again, that the listing may not correspond exactly to the program as
entered. As discussed in the section on the Disassembled Source Line, the
disassembler displays in signed hexadecimal any number it interprets as an
offset from a register; all other numbers are displayed in unsigned
hexadecimal.

4-14 Embedded Communications Computing Web Site

One-Line Assembler/ Disassembler

4

Assembler Error Messages

The following is a list of the assembler error messages:

An Operand has a Length of Zero

Unknown Mnemonic

Excessive Operand(s)

Missing Operand(s)

Operand Type Not Found

Operand Prefix

Operand Address Misalignment

Operand Displacement

Operand Sign Extension

Operand Data Field Overflow

Operand Conversion

5-1

55System Calls

Introduction
This chapter describes the PPCBug System Call handler, which allows
system calls from user programs. The system calls can be used to access
selected functional routines contained within the debugger, including input
and output routines. The System Call handler may also be used to transfer
control to the debugger at the end of a user program (refer to .RETURN in
this section for more information).

In the descriptions of some input and output functions, reference is made
to the default input port or the default output port. After power-up or reset,
the default input and output port is initialized to be port 0 (the debug port).
The defaults may be changed, however, using the .REDIR_I and
.REDIR_O functions.

Invoking System Calls

The System Call handler is accessible through the SC (system call)
instruction, with exception vector $00C00 (System Call Exception).

To invoke a system call from a user program, insert the following code into
the source program. The code corresponding to the particular system
routine is specified in register R10. Parameters are passed and returned in
registers R3 to Rn, where n is less than 10.

ADDI R10,R0,$XXXX

SC

$XXXX is the 16-bit code for the system call routine, and SC is the system
call instruction (system call to the debugger). Register R10 is set to
$0000XXXX.

Refer to Chapter 4, One-Line Assembler/ Disassembler for information on
using the SYSCALL system call instruction in the One-line Assembler.

5-2 Embedded Communications Computing Web Site

System Calls

5

String Formats for I/O

Within the context of the System Call handler there are two formats for
strings:

A line is defined as a string followed by a carriage return and a line feed
(<CR><LF>).

System Call Routines
The system call routines are described in this chapter, in order by the 16-
bit hex code. Table 5-1 list the routines in code order; Table 5-2 lists them
in alphabetical order.

On entry to firmware system call routines, the machine state is saved so
that a subsequent abort or break condition allows you to resume if you
wish.

Pointer/Pointer Format The string is defined by a pointer to the
first character and a pointer to the last
character + 1.

Pointer/Count Format The string is defined by a pointer to a
count byte, which contains the count of
characters in the string, followed by the
string itself.

Table 5-1. System Call Routines -- Hex Code Order

Code Routine Description

$0000 .INCHR Input character

$0001 .INSTAT Input serial port status

$0002 .INLN Input line (pointer/pointer format)

$0003 .READSTR Input string (pointer/count format)

$0004 .READLN Input line (pointer/count format)

$0005 .CHKBRK Check for break

$0010 .DSKRD Disk read

System Call Routines

http://www.motorola.com/computer/literature 5-3

5

$0011 .DSKWR Disk write

$0012 .DSKCFIG Disk configure

$0014 .DSKFMT Disk format

$0015 .DSKCTRL Disk control

$0018 .NETRD Read/get from host

$0019 .NETWR Write/send to host

$001A .NETCFIG Configure network parameters

$001B .NETFOPN Open file for reading

$001C .NETFRD Retrieve specified file blocks

$001D .NETCTRL Implement special control functions

$0020 .OUTCHR Output character

$0021 .OUTSTR Output string (pointer/pointer format)

$0022 .OUTLN Output line (pointer/pointer format)

$0023 .WRITE Output string (pointer/count format)

$0024 .WRITELN Output line (pointer/count format)

$0025 .WRITDLN Output line with data (pointer/count format)

$0026 .PCRLF Output carriage return and line feed

$0027 .ERASLN Erase line

$0028 .WRITD Output string with data (pointer/count format)

$0029 .SNDBRK Send break

$0043 .DELAY Timer delay function

$0050 .RTC_TM Time initialization for RTC

$0051 .RTC_DT Date initialization for RTC

$0052 .RTC_DSP Display RTC time and date

$0053 .RTC_RD Read the RTC Registers

$0060 .REDIR Redirect I/O of a System Call function

$0061 .REDIR_I Redirect input

$0062 .REDIR_O Redirect output

$0063 .RETURN Return to PPCBug

Table 5-1. System Call Routines -- Hex Code Order (Continued)

Code Routine Description

System Calls

5-4 Embedded Communications Computing Web Site

System Calls

5

$0064 .BINDEC Convert binary to Binary Coded Decimal (BCD)

$0067 .CHANGEV Parse value

$0068 .STRCMP Compare two strings (pointer/count format)

$0069 .MULU32 Multiply two 32-bit unsigned integers

$006A .DIVU32 Divide two 32-bit unsigned integers

$006B .CHK_SUM Generate checksum

$0070 .BRD_ID Return pointer to board ID packet

$0071 .ENVIRON Access boot environment parameters

$0073 .PFLASH Program FLASH memory

$0074 .DIAGFCN Diagnostic function(s)

$0090 .SIOPEPS Retrieve SCSI pointers

$0100 .FORKMPU Fork MPU

$0101 .FORKMPUR Fork Idle MPU with Register Set

$0110 .IDLEMPU Idle MPU

$0120 .IOINQ Port Inquire

$0124 .IOINFORM Port Inform

$0128 .IOCONFIG Port Configure

$012C .IODELETE Port Delete

$0130 .SYMBOLTA Attach Symbol Table

$0131 .SYMBOLTD Detach Symbol Table

Table 5-2. System Call Routines -- Alphabetical Order

Routine Code Description

.BINDEC $0064 Convert binary to Binary Coded Decimal (BCD)

.BRD_ID $0070 Return pointer to board ID packet

.CHANGEV $0067 Parse value

.CHK_SUM $006B Generate checksum

.CHKBRK $0005 Check for break

Table 5-1. System Call Routines -- Hex Code Order (Continued)

Code Routine Description

System Call Routines

http://www.motorola.com/computer/literature 5-5

5

.DELAY $0043 Timer delay function

.DIAGFCN $0074 Diagnostic function(s)

.DIVU32 $006A Divide two 32-bit unsigned integers

.DSKCFIG $0012 Disk configure

.DSKCTRL $0015 Disk control

.DSKFMT $0014 Disk format

.DSKRD $0010 Disk read

.DSKWR $0011 Disk write

.ENVIRON $0071 Access boot environment parameters

.ERASLN $0027 Erase line

.FORKMPU $0100 Fork MPU

.FORKMPUR $0101 Fork Idle MPU with Register Set

.IDLEMPU $0110 Idle MPU

.INCHR $0000 Input character

.INLN $0002 Input line (pointer/pointer format)

.INSTAT $0001 Input serial port status

.IOCONFIG $0128 Port Configure

.IODELETE $012C Port Delete

.IOINFORM $0124 Port Inform

.IOINQ $0120 Port Inquire

.MULU32 $0069 Multiply two 32-bit unsigned integers

.NETCFIG $001A Configure network parameters

.NETCTRL $001D Implement special control functions

.NETFOPN $001B Open file for reading

.NETFRD $001C Retrieve specified file blocks

.NETRD $0018 Read/get from host

.NETWR $0019 Write/send to host

.OUTCHR $0020 Output character

.OUTLN $0022 Output line (pointer/pointer format)

Table 5-2. System Call Routines -- Alphabetical Order

Routine Code Description

5-6 Embedded Communications Computing Web Site

System Calls

5

.OUTSTR $0021 Output string (pointer/pointer format)

.PCRLF $0026 Output carriage return and line feed

.PFLASH $0073 Program FLASH memory

.READLN $0004 Input line (pointer/count format)

.READSTR $0003 Input string (pointer/count format)

.REDIR $0060 Redirect I/O of a System Call function

.REDIR_I $0061 Redirect input

.REDIR_O $0062 Redirect output

.RETURN $0063 Return to PPCBug

.RTC_DSP $0052 Display RTC time and date

.RTC_DT $0051 Date initialization for RTC

.RTC_RD $0053 Read the RTC Registers

.RTC_TM $0050 Time initialization for RTC

.SIOPEPS $0090 Retrieve SCSI pointers

.SNDBRK $0029 Send break

.STRCMP $0068 Compare two strings (pointer/count format)

.SYMBOLTA $0130 Attach Symbol Table

.SYMBOLTD $0131 Detach Symbol Table

.WRITD $0028 Output string with data (pointer/count format)

.WRITDLN $0025 Output line with data (pointer/count format)

.WRITE $0023 Output string (pointer/count format)

.WRITELN $0024 Output line (pointer/count format)

Table 5-2. System Call Routines -- Alphabetical Order

Routine Code Description

System Call Routines

http://www.motorola.com/computer/literature 5-7

5

.INCHR

Name

.INCHR - Input character routine

Code

$0000

Description

.INCHR reads a character from the default input port. The character is
returned in the LSB of R03.

Entry Conditions

None

Exit Conditions Different From Entry

R03: bits 7 through 0 contain the character returned
R03: bits 31 through 8 are zero.

5-8 Embedded Communications Computing Web Site

System Calls

5

.INSTAT

Name

.INSTAT - Input serial port status routine

Code

$0001

Description

.INSTAT is used to see if there are characters in the default input port
buffer. R03 is set to indicate the result of the operation.

Entry Conditions

No arguments required

Exit Conditions Different From Entry

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if the receiver buffer is not empty.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if the receiver buffer is empty.

System Call Routines

http://www.motorola.com/computer/literature 5-9

5

.INLN

Name

.INLN - Input line routine

Code

$0002

Description

.INLN is used to read a line from the default input port. The buffer size
should be at least 256 bytes.

Entry Conditions

R03: 32-bit address of string buffer

Exit Conditions Different From Entry

R03: Address of last character in the string+1

Note A line is a string of characters terminated by a <CR>. The
maximum allowed size is 254 characters. The terminating <CR>
is not considered part of the string, but it is returned in the buffer,
that is, the returned pointer points to it. The control characters
described in the section Control Characters in Chapter 2 are in
effect.

5-10 Embedded Communications Computing Web Site

System Calls

5

.READSTR

Name

.READSTR - Read string into variable-length buffer

Code

$0003

Description

.READSTR is used to read a string of characters from the default input port
into a buffer. On entry, the first byte in the buffer indicates the maximum
number of characters that can be placed in the buffer. The buffer size
should at least be equal to that number+2. The maximum number of
characters that can be placed in a buffer is 254 characters. On exit, the
count byte indicates the number of characters in the buffer. Input
terminates when a <CR> is received. A null character appears in the buffer,
although it is not included in the string count. All printable characters are
echoed to the default output port. The <CR> is not echoed. Some control
character processing is done:

All other control characters are ignored

Entry Conditions

R03: 32-bit address of input buffer

Exit Conditions Different From Entry

The count byte contains the number of bytes in the buffer.

^G Bell Echoed

^X Cancel line Line is erased

^H Backspace Last character is erased

 Same as backspace Last character is erased

<LF> Line Feed Echoed

<CR> Carriage Return Terminates input

System Call Routines

http://www.motorola.com/computer/literature 5-11

5

Note This routine allows the caller to dictate the maximum length of
input to be less than 254 characters. If more characters are
entered, then the buffer input is truncated. Use the control
characters described in Disk I/O Support for more details.

5-12 Embedded Communications Computing Web Site

System Calls

5

.READLN

Name

.READLN - Read line to fixed-length buffer

Code

$0004

Description

.READLN is used to read a string of characters from the default input port.
Characters are echoed to the default output port. A string consists of a
count byte followed by the characters read from the input. The count byte
indicates the number of characters in the input string, excluding the
<CR><LF> sequence. A string may be up to 254 characters.

Entry Conditions

R03: 32-bit address of input buffer

Exit Conditions Different From Entry

The first byte in the buffer indicates the string length.

Note The caller must allocate 256 bytes for a buffer. Input may be up
to 254 characters. A <CR><LF> sequence is sent to default output
following echo of input. The control characters described in the
section Control Characters in Chapter 2 are in effect.

System Call Routines

http://www.motorola.com/computer/literature 5-13

5

.CHKBRK

Name

.CHKBRK - Check for break

Code

$0005

Description

.CHKBRK alters R03 according to a break status being detected at the
default input port.

Entry Conditions

No arguments required

Exit Conditions Different From Entry

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if break status is not detected.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if break status is detected.

5-14 Embedded Communications Computing Web Site

System Calls

5

.DSKRD
.DSKWR

Name

.DSKRD - Disk read routine

.DSKWR - Disk write routine

Codes

$0010

$0011

Description

These routines are used to read and write blocks of data from/to the
specified disk or tape device. Information about the data transfer is passed
in a command packet which has been built somewhere in memory. (The
user program must first manually prepare the packet.) The address of the
packet is passed as an argument to the routine. The same command packet
format is used for .DSKRD and .DSKWR. It is eight half-words in length
and is arranged as follows:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Half-Word

$04
Memory Address

Most Significant Half-Word

$06 Least Significant Half-Word

$08 Block Number (Disk) Most Significant Half-Word

or

$0A File Number (Tape) Least Significant Half-Word

$0C Number of Blocks

$0E Flag Byte Address Modifier

System Call Routines

http://www.motorola.com/computer/literature 5-15

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number (LUN) of device to use

Status
Half-Word

This status half-word reflects the result of the operation. It
is zero if the command completed without errors. Refer to
Appendix F for meanings of returned error codes.

Memory
Address

Address of buffer in memory. On a disk read, data is
written starting at this address. On a disk write, data is
read starting at this address.

Block Number For disk devices, this is the block number where the
transfer starts. On a disk read, data is read starting at this
block. On a disk write, data is written starting at this block.

File Number For streaming tape devices, this is the file number where
the transfer starts. This field is used if the IFN bit in the
Flag Byte is cleared (refer to the Flag Byte description
below). On a disk read, data is read starting at this file. On
a disk write, data is written starting at this file.

Number of
Blocks

The number of blocks to read from the disk (.DSKRD) or
to write to the disk (.DSKWR). For streaming tape
devices, the actual number of blocks transferred is
returned in this field.

Flag Byte The flag byte is used to specify variations of the same
command, and to receive special status information.

Bits 0 through 3 are used as command bits, and bits 4
through 7 are used as status bits. For disk devices, this
field must be set to zero. For streaming tape devices, the
following bits are defined:

Bit 7 Filemark flag. If 1, a filemark was detected at the
end of the last operation.

Bit 1 Ignore File Number (IFN) flag. If 0, the file number
field is used to position the tape before any reads or
writes are done. If 1, the file number field is
ignored, and reads or writes start at the present tape
position.

5-16 Embedded Communications Computing Web Site

System Calls

5 Entry Conditions

R03: 32-bit address of command packet

Exit Conditions Different From Entry

Status half-word of command packet is updated. Data is written into
memory as a result of .DSKRD routine. Data is written to disk as a result
of .DSKWR routine.

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors.

Bit 0 End of File flag. If 0, reads or writes are done until
the specified block count is exhausted. If 1, reads
are done until the count is exhausted or until a
filemark is found. If 1, writes are terminated with a
filemark.

Address
Modifier

VMEbus address modifier to use while transferring data.
If zero, a default value is selected by the debugger. If
nonzero, the specified value is used.

System Call Routines

http://www.motorola.com/computer/literature 5-17

5

.DSKCFIG

Name

.DSKCFIG - disk configure routine

Code

$0012

Description

This routine allows you to change the configuration of the specified device.
It effectively performs the IOT command under program control. Refer to
Table E-2 for information on formatting floppy disks.

All the required parameters are passed in a command packet which has
been built somewhere in memory. The address of the packet is passed as
an argument to the routine. Refer to Command Packet on page 5-17.

Entry Conditions

R03: 32-bit address of command packet

Exit Conditions Different From Entry

Status half-word of command packet is updated. The device configuration
is changed.

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors.

Command Packet

The command packet format is as follows:

5-18 Embedded Communications Computing Web Site

System Calls

5

Field descriptions:

Device Descriptor Packet

The Device Descriptor Packet is as follows:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Half-Word

$04
Memory Address

Most Significant Half-Word

$06 Least Significant Half-Word

$0A 0

$0C 0

$0E 0 Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number (LUN) of device to use

Status Half-Word This status half-word reflects the result of the operation. It is
zero if the command completed without errors. Refer to
Appendix F for meanings of returned error codes.

Memory Address Contains a pointer to a Device Descriptor Packet that
contains the configuration information to be changed

Address Modifier VMEbus address modifier to use while transferring data. If
zero, a default value is selected by the debugger. If nonzero,
the specified value is used.

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 0

$04
Parameters Mask

Upper (Most Significant) Half-Word

$06 Lower (Least Significant) Half-Word

$08
Attributes Mask

Upper (Most Significant) Half-Word

$0A Lower (Least Significant) Half-Word

$0C
Attributes Flags

Upper (Most Significant) Half-Word

$0E Lower (Least Significant) Half-Word

System Call Routines

http://www.motorola.com/computer/literature 5-19

5

Most of the fields in the Device Descriptor Packet are equivalent to the
fields defined in the Configuration Area block (CFGA). In the field
descriptions following, reference is made to the equivalent field in the
CFGA whenever possible. For additional information on these fields, refer
to tables in Configuration Area Block CFGA Fields on page 5-22.

$10

Parameters

Controller LUN Same as in command packet

Device LUN Same as in command packet

Parameters
Mask

Equivalent to the IOSPRM and IOSEPRM fields, with
the lower half-word equivalent to IOSPRM, and the
upper half-word equivalent to IOSEPRM

Attributes
Mask

Equivalent to the IOSATM and IOSEATM fields, with
the lower half-word equivalent to IOSATM, and the
upper half-word equivalent to IOSEATM

Attributes
Flags

Equivalent to the IOSATW and IOSEATW fields, with
the lower half-word equivalent to IOSATW, and the
upper half-word equivalent to IOSEATW

Parameters The parameters used for device reconfiguration are
specified in this area. Most parameters have an exact
CFGA equivalent.

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 0

$04
Parameters Mask

Upper (Most Significant) Half-Word

$06 Lower (Least Significant) Half-Word

5-20 Embedded Communications Computing Web Site

System Calls

5

The Disk Packet Parameters are shown in the following table. The
parameters that do not have an exact equivalent CFGA field are indicated
with an asterisk (*).

Table 5-3. Disk Packet Parameters

Parameter
Offset
(Bytes)

Length
(Bytes)

CFGA
Equivalent Description

P_DDS* $10 1 N/A Device descriptor size. For internal use
only, this field does not have an equivalent
CFGA field. It should be set to 0.

P_DSR $11 1 IOSSR Step rate (encoded). Refer to the IOSSR
field in Table 5-8 for step rate code values.

P_DSS* $12 1 IOSPSM Sector size, encoded as follows (IOSPSM is
a two-byte field containing the actual sector
size):

$00 128 bytes

$01 256 bytes

$02 512 bytes

$03 1024 bytes

$04-
$FF

Reserved encodings

P_DBS* $13 1 IOSREC Record (Block) size, encoded as follows
(IOSREC is a two-byte field containing the
actual block size):

$00 128 bytes

$01 256 bytes

$02 512 bytes

$03 1024 bytes

P_DST* $14 2 IOSSPT Sectors per track; P_DST is a two byte field,
IOSSPT is a one-byte field.

P_DIF $16 1 IOSILV Interleave factor

P_DSO $17 1 IOSSOF Spiral offset

P_DSH* $18 1 IOSSHD Starting head; This field is equivalent to the
lower byte of IOSSHD.

P_DNH $19 1 IOSHDS Number of heads

System Call Routines

http://www.motorola.com/computer/literature 5-21

5

P_DNCYL $1A 2 IOSTRK Number of cylinders

P_DPCYL $1C 2 IOSPCOM Precompensation cylinder

P_DRWCYL $1E 2 IOSRWCC Reduced write current cylinder

P_DECCB $20 2 IOSECC ECC data burst length

P_DGAP1 $22 1 IOSGPB1 Gap 1 size

P_DGAP2 $23 1 IOSGPB2 Gap 2 size

P_DGAP3 $24 1 IOSGPB3 Gap 3 size

P_DGAP4 $25 1 IOSGPB4 Gap 4 size

P_DSSC $26 1 IOSSSC Spare sectors count

P_DRUNIT $27 1 IOSRUNIT Reserved area units

P_DRCALT $28 2 IOSRSVC1 Reserved count 1 (for alternate mapping
area)

P_DRCCTR $2A 2 IOSRSVC2 Reserved count 2 (for controller)

Table 5-3. Disk Packet Parameters (Continued)

Parameter
Offset
(Bytes)

Length
(Bytes)

CFGA
Equivalent Description

5-22 Embedded Communications Computing Web Site

System Calls

5

Configuration Area Block CFGA Fields

Attribute Mask -- IOSATM and IOSEATM

The IOSATM field bits are defined in the following table: A 1 in a
particular bit position indicates that the corresponding attribute from the
attributes (or extended attributes) word should be used to update the
configuration. A 0 in a bit position indicates that the current attribute
should be retained.

All IOSEATM bits are undefined and should be set to 0.

Table 5-4. IOSATM Fields (CFGA)

Label
Bit

Position
Description

IOADDEN 0 Data density

IOATDEN 1 Track density

IOADSIDE 2 Single/double sided

IOAFRMT 3 Floppy disk format

IOARDISC 4 Disk type

IOADDEND 5 Drive data density

IOATDEND 6 Drive track density

IOARIBS 7 Embedded servo drive seek

IOADPCOM 8 Post-read/pre-write precompensation

IOASIZE 9 Floppy disk size

IOATKZD 13 Track zero data density

System Call Routines

http://www.motorola.com/computer/literature 5-23

5

Parameter Mask -- IOSPRM and IOSEPRM

The IOSPRM and IOSEPRM bits are defined in the following tables. A 1
in a particular bit position indicates that the corresponding parameter from
the configuration area (CFGA) should be used to update the device
configuration. A 0 in a bit position indicates that the parameter value in the
current configuration will be retained.

Table 5-5. IOSPRM Fields (CFGA)

Label
Bit

Position
Description

IOSRECB 0 Operating system block size

IOSSPTB 4 Sectors per track

IOSHDSB 5 Number of heads

IOSTRKB 6 Number of cylinders

IOSILVB 7 Interleave factor

IOSSOFB 8 Spiral offset

IOSPSMB 9 Physical sector size

IOSSHDB 10 Starting head number

IOSPCOMB 12 Precompensation cylinder number

IOSSRB 14 Step rate code

IOSRWCCB 15 Reduced write current cylinder number and ECC
data burst length

Table 5-6. IOSEPRM Fields (CFGA)

Label
Bit

Position
Description

IOAGPB1 0 Gap byte 1

IOAGPB2 1 Gap byte 2

IOAGPB3 2 Gap byte 3

IOAGPB4 3 Gap byte 4

IOASSC 4 Spare sector count

IOARUNIT 5 Reserved area units

IOARVC1 6 Reserved count 1

IOARVC2 7 Reserved count 2

5-24 Embedded Communications Computing Web Site

System Calls

5

Attribute Word -- IOSATW and IOSEATW

IOSATW contains various flags that specify characteristics of the media
and drive, which are defined in the following table. All unused bits must
be set to 0. All IOSEATW bits are undefined and should be set to 0.

Table 5-7. IOSATW Fields (CFGA)

Bit Number Description

Bit 0 Data density: 0 = Single density (FM encoding)

1 = Double density (MFM encoding)

Bit 1 Track density: 0 = Single density (48 TPI)

1 = Double density (96 TPI)

Bit 2 Number of sides: 0 = Single sided floppy

1 = Double sided floppy

Bit 3 Floppy disk format:
(sector numbering)

0 = Motorola format
1 to n on side 0
n+1 to 2n on side 1

1 = Standard IBM format
1 to n on both sides

Bit 4 Disk type: 0 = Floppy disk

1 = Hard disk

Bit 5 Drive data density: 0 = Single density (FM encoding)

1 = Double density (MFM encoding)

Bit 6 Drive track density: 0 = Single density

1 = Double density

Bit 8 Post-read/pre-write
precompensation:

0 = Pre-write

1 = Post-read

Bit 9 Floppy disk size: 0 = 3 1/2 and 5 1/4 inch floppy

1 = 8-inch floppy

Bit 13 Track zero density: 0 = Single density (FM encoding)

1 = Same as remaining tracks

System Call Routines

http://www.motorola.com/computer/literature 5-25

5

Table 5-8. CFGA Fields

Parameter Description

IOSREC Record (Block) size Number of bytes per record (block). Must be an integer
multiple of the physical sector size.

IOSSPT Sectors per track Number of sectors per track.

IOSHDS Number of heads Number of recording surfaces for the specified device.

IOSTRK Number of cylinders Number of cylinders on the media.

IOSILV Interleave factor This field specifies how the sectors are formatted on a
track. Normally, consecutive sectors in a track are
numbered sequentially in increments of 1 (interleave
factor of 1). The interleave factor controls the physical
separation of logically sequential sectors. This physical
separation gives the host time to prepare to read the next
logical sector without requiring the loss of an entire disk
revolution.

IOSPSM Physical sector size Actual number of bytes per sector on media.

IOSSOF Spiral offset Used to displace the logical start of a track from the
physical start of a track. The displacement is equal to the
spiral offset times the head number, assuming that the
first head is 0. This displacement is used to give the
controller time for a head switch when crossing tracks.

IOSSHD Starting head number The first head number for the device.

IOSPCOM Precompensation
cylinder

The cylinder on which precompensation begins.

IOSSR Step The rate at which the read/write heads can be moved
when seeking a track on the disk. The encoding is as
follows:

3-1/2 Inch/
Step Rate Winchester 5-1/4 Inch 8-Inch

Code Hard Disks Floppy Floppy

$00 0 msec 12 msec 6 msec
$01 6 msec 6 msec 3 msec
$02 10 msec 12 msec 6 msec
$03 15 msec 20 msec 10 msec
$04 20 msec 30 msec 15 msec

IOSRWCC Reduced write
current cylinder

The cylinder number at which the write current should be
reduced when writing to the drive. This parameter is
normally specified by the drive manufacturer.

5-26 Embedded Communications Computing Web Site

System Calls

5

IOSECC ECC data burst length The number of bits to correct for an ECC error when
supported by the disk controller.

IOSGPB1 Gap byte 1 The number of words of zeros that are written before the
header field in each sector during format.

IOSGPB2 Gap byte 2 The number of words of zeros that are written between
the header and data fields during format and write
commands.

IOSGPB3 Gap byte 3 The number of words of zeros that are written after the
data fields during format commands.

IOSGPB4 Gap byte 4 The number of words of zeros that are written after the
last sector of a track and before the index pulse.

IOSSSC Spare sectors count The number of sectors per track allocated as spare
sectors. These sectors are only used as replacements for
bad sectors on the disk.

IOSRUNIT Reserved area units The unit of measurement used for IOSRSVC1 and
IOSRSVC2. If zero, the units are in tracks; if 1, the units
are in cylinders.

IOSRSVC1 Reserved count 1 The number of tracks (IOSRUNIT = 0), or the number of
cylinders (IOSRUNIT = 1) reserved for the alternate
mapping area on the disk.

IOSRSVC2 Reserved count 2 The number of tracks (IOSRUNIT = 0), or the number of
cylinders (IOSRUNIT = 1) reserved for use by the
controller.

Table 5-8. CFGA Fields

Parameter Description

System Call Routines

http://www.motorola.com/computer/literature 5-27

5

.DSKFMT

Name

.DSKFMT - Disk format routine

Code

$0014

Description

This routine allows you to send a format command to the specified device.
The parameters required for the command are passed in a command packet
which has been built somewhere in memory. The address of the packet is
passed as an argument to the routine. The format of the packet is as
follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Half-Word

$04
Memory Address

Most Significant Half-Word

$06 Least Significant Half-Word

$08
Disk Block Number

Most Significant Half-Word

$0A Least Significant Half-Word

$0C 0

$0E Flag Byte Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number of device to use

Status
Half-Word

This status half-word reflects the result of the operation.
It is zero if the command completed without errors.
Refer to Appendix F for meanings of returned error
codes.

5-28 Embedded Communications Computing Web Site

System Calls

5

Entry Conditions

R03: 32-bit address of command packet

Memory
Address

Address of buffer in memory. On disk read, data is
written starting at this address. On disk write, data is
read starting at this address. On disk format, this field
does not apply.

Block
Number

For disk devices, when doing a format track, the track
that contains this block number is formatted. This field
is ignored for streaming tape devices.

Flag Byte Contains additional information. Bit 0 is interpreted as
follows for disk devices:

 If 0, it indicates a Format Track operation. The
track that contains the specified block is
formatted.

 If 1, it indicates a Format Disk operation. All the
tracks on the disk are formatted.

For streaming tapes, bit 0 is interpreted as follows:

If 0, it selects a Retension Tape operation. This
rewinds the tape to BOT, advances the tape
without interruptions to EOT, and then rewinds it
back to BOT. Tape retension is recommended by
cartridge tape suppliers before writing or reading
data when a cartridge has been subjected to a
change in environment or a physical shock, has
been stored for a prolonged period of time or at
extreme temperature, or has been previously used
in a start/stop mode.

If 1, it selects an Erase Tape operation. This
completely clears the tape of previous data and at
the same time retensions the tape.

Address
Modifier

VMEbus address modifier to use while transferring
data. If zero, a default value is selected by the debugger.
If nonzero, the specified value is used.

System Call Routines

http://www.motorola.com/computer/literature 5-29

5

Exit Conditions Different From Entry

Status half-word of command packet is updated.

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors.

5-30 Embedded Communications Computing Web Site

System Calls

5

.DSKCTRL

Name

.DSKCTRL - Disk control routine

Code

$0015

Description

This routine is used to implement any special device control routines that
cannot be accommodated easily with any of the other disk routines. At the
present, the only defined routine is SEND packet, which allows you to send
a packet in the specified format of the controller. The required parameters
are passed in a command packet which has been built somewhere in
memory. The address of the packet is passed as an argument to the routine.

The packet is as follows:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Half-Word

$04
Memory Address

Most Significant Half-Word

$06 Least Significant Half-Word

$08 0

$0A 0

$0C 0

$0E 0 Address Modifier

Controller LUN Logical Unit Number (LUN) of controller to use.

Device LUN Logical Unit Number of device to use

Status
Half-Word

This status half-word reflects the result of the operation.
It is zero if the command completed without errors.
Refer to Appendix F for meanings of returned error
codes.

System Call Routines

http://www.motorola.com/computer/literature 5-31

5
Entry Conditions

R03: 32-bit address of command packet

Exit Conditions Different From Entry

Status half-word of command packet is updated. Additional side effects
depend on the packet sent to the controller.

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors.

Memory
Address

Contains a pointer to the controller packet to send. Note
that the controller packet to send (as opposed to the
command packet) is controller and device dependent.
Information about this packet should be found in the
user’s manual for the controller and device being
accessed.

Address
Modifier

VMEbus address modifier to use while transferring
data. If zero, a default value is selected by the debugger.
If nonzero, the specified value is used.

5-32 Embedded Communications Computing Web Site

System Calls

5

.NETRD
.NETWR

Name

.NETRD - Read/get from host

.NETWR - Write/put to host

Code

$0018/$0019

Description

This routine is used to get files from the destination host over the specified
network interface. The .NETWR system call is used to send files to the
host. Information about the file transfer is passed in a command packet
which has been built in memory. (The user program must first manually
prepare the packet.) The address of the packet is passed as an argument to
the routine. These routines basically behave the same as the NIOP
command, but under program control. All packets must be word-aligned.
The format of the packet structure, NIOPCALL, is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Data Transfer Address

Most Significant Word

$06 Least Significant Word

$08
Maximum Length of Transfer

Most Significant Word

$0A Least Significant Word

$0C
Byte Offset

Most Significant Word

$0E Least Significant Word

$10
Transfer Time in Seconds (Status)

Most Significant Word

$12 Least Significant Word

$14
Transfer Byte Count (Status)

Most Significant Word

$16 Least Significant Word

$18
Boot Filename String $40(&64) Bytes

$56

System Call Routines

http://www.motorola.com/computer/literature 5-33

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number of device to use

Status Word This status word reflects the result of the operation. It is
zero if the command completed without errors. Refer to
Appendix H for meanings of returned error codes.

Data Transfer
Address

Address of buffer in memory. On a read, data is read to
(received to) starting at this address. On a write, data is
written (sent) starting at this address.

Length of
Transfer

The number of bytes from the data transfer address to
transfer. A length of 0 specifies to transfer the entire file
on a read. On a write the length must be set to the
number of bytes to transfer.

Byte Offset The offset into the file on a read. This permits users to
wind into a file.

Transfer Time The number of seconds that elapsed for the period of the
data transfer. This field is status only and will be
updated only on a successful data transfer.

Transfer
Byte Count

This field is status only and will be updated only on a
successful data transfer. If the length of transfer field is
set to a non-zero value on a read and the desired file is
smaller than the desired length, the length will be
written to the actual number of bytes transferred, up to
the desired length.

Boot Filename
String

The name of the file to load/store. On a write the file
must exist on the host system and also be writable (write
permission). The filename string must be null
terminated. The maximum length of the string is 64
bytes inclusive of the null terminator.

5-34 Embedded Communications Computing Web Site

System Calls

5

.NETCFIG

Name

.NETCFIG - Configure network parameters

Code

$001A

Description

This routine allows you to change the configuration parameters of the
specified network interface. The .NETCFIG system call effectively
performs a NIOT command under program control. All the required
parameters are passed in a command packet which has been built in
memory.

The address of the packet is passed as an argument to the routine. This
packet contains the memory address (pointer) of the configuration
parameters to/with you wish to update/change. The packet also contains a
control flag field; this control flag specifies the configuration operation:
read, write, or write to NVRAM. All packets must be word-aligned. The
format for the packet structure, NIOTCALL, is shown below:

Field descriptions:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Network Configuration Parameters Pointer

Most Significant Word

$06 Least Significant Word

$08
Device Configuration Parameters Pointer

Most Significant Word

$0A Least Significant Word

$0C
Control Flag

Most Significant Word

$0E Least Significant Word

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number of device to use

System Call Routines

http://www.motorola.com/computer/literature 5-35

5

The Network Configuration Parameters structure has the following format:

Status Word This status word reflects the result of the operation. It is
zero if the command completed without errors. Refer to
Appendix H for meanings of returned error codes.

Network
Configuration
Parameters Pointer

The location in memory of the network configuration
parameters.

Device
Configuration
Parameters Pointer

The location in memory of the device configuration
parameters. To date no device configuration parameters
are used or needed.

Control Flag The configuration parameters operation: read, write, or
write to NVRAM. The control flag bit definitions are as
follows:

0 Read configuration parameters. Pointer specifies
destination.

1 Write (update) configuration parameters. Pointer
specifies source.

2 Write (update) configuration parameters in
NVRAM. Pointer specifies source.

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00
Packet Version/Identifier

Most Significant Word

$02 Least Significant Word

$04
Node Control Memory Address

Most Significant Word

$06 Least Significant Word

$08
Boot File Load Address

Most Significant Word

$0A Least Significant Word

$0C
Boot File Execution Address

Most Significant Word

$0E Least Significant Word

$10
Boot File Execution Delay

Most Significant Word

$12 Least Significant Word

$14
Boot File Length

Most Significant Word

$16 Least Significant Word

5-36 Embedded Communications Computing Web Site

System Calls

5

Field descriptions:

$18
Boot File Byte Offset

Most Significant Word

$1A Least Significant Word

$1C
Trace Buffer Address (TXD/RXD)

Most Significant Word

$1E Least Significant Word

$20
Client IP Address

Most Significant Word

$22 Least Significant Word

$24
Server IP Address

Most Significant Word

$26 Least Significant Word

$28
Subnet IP Address Mask

Most Significant Word

$2A Least Significant Word

$2C
Broadcast IP Address Mask

Most Significant Word

$2E Least Significant Word

$30
Gateway IP Address

Most Significant Word

$32 Least Significant Word

$34 BOOTP/RARP Retry TFTP/ARP Retry

$36 BOOTP/RARP Control Update Control

$38

$76
Boot Filename String $40(&64) Bytes

$78

$B6
Argument Filename String $40(&64) Bytes

Node Control
Memory Address

The starting address of the necessary memory needed
for the transmit and receive buffers. 256KB are needed
for the specified Ethernet driver (transmit/receive
buffers).

Client IP Address The IP address of the client. The firmware is considered
to be the client.

Server IP Address The IP address of the server. The firmware is considered
to be the server.

F E D C B A 9 8 7 6 5 4 3 2 1 0

System Call Routines

http://www.motorola.com/computer/literature 5-37

5

Subnet IP Address
Mask

The subnet IP address mask. This mask is used to
determine if the server and client are resident on the
same network. If they are not, the gateway IP address is
used as the intermediate target (server).

Broadcast IP
Address

The broadcast IP address that the firmware utilizes
when an IP broadcast needs to be performed.

Gateway IP
Address

The gateway IP address. The gateway address would be
necessary if the server and the client do not reside on the
same network. The gateway IP address would be used as
the intermediate target (server).

Boot File Name The name of the boot file to load. Once the file is
loaded, control is passed to the loaded file (program).
To specify a null filename, the string ’NULL’ must be
used. This resets the filename buffer to a null character
string.

Argument File
Name

The name of the argument file. This file may be used by
the booted file (program) for an additional file load. To
specify a null filename, the string ’NULL’ must be used.
This resets the filename buffer to a null character string.

Boot File Load
Address

The load address of the boot file.

Boot File Execution
Address

The execution address of the boot file.

Boot File Execution
Delay

The delay, in seconds, before control is passed to the
loaded file (program).

Boot File Length The number of bytes from the data transfer address to
transfer. A length of 0 specifies to transfer the entire file
on a read. On a write the length must be set to the
number of bytes to transfer.

Boot File Offset The offset into the file on a read. This permits users to
wind into a file.

BOOTP/RARP
Request Retry

The number of the number of retries that should be
attempted prior to giving up. A retry value of zero
specifies always to retry (not give up).

5-38 Embedded Communications Computing Web Site

System Calls

5

TFTP/ARP Request
Retry

The number of retries that should be attempted prior to
giving up. A retry value of zero specifies always to retry
(not give up).

Trace Character
Buffer Address

The starting address of memory in which to place the
trace characters. The receive/transmit packet tracing is
disabled by default (value of 0). Any non-zero value
enables tracing.

Tracing would only be used in a debug environment and
normally should be disabled. Care should be exercised
when enabling this feature; you should ensure adequate
memory exists. The following characters are defined for
tracing:

? Unknown

& Unsupported Ethernet type

* Unsupported IP type

% Unsupported UDP type

$ Unsupported BOOTP type

[BOOTP request

] BOOTP reply

+ Unsupported ARP type

(ARP request

) ARP reply

- Unsupported RARP type

{ RARP request

} RARP reply

^ Unsupported TFTPtype

\ TFTP read request

/ TFTP write request

< TFTP acknowledgment

> TFTP data

| TFTP error

System Call Routines

http://www.motorola.com/computer/literature 5-39

5

, Unsupported ICMP type

: ICMP echo request

; ICMP echo reply

BOOTP/RARP
Request Control

The BOOT/RARP request control during the boot
process. Control can be set either to always (A) or to
when needed (W). When control is set to always, the
BOOTP/RARP request is always sent, and the
accompanying reply always expected. When control is
set to when needed, the BOOTP/RARP request is sent if
needed (i.e., IP addresses of 0, null boot file name).

BOOTP/RARP
Replay Update
Control

The updating of the configuration parameters following
a BOOTP/RARP reply. Receipt of a BOOTP/RARP
reply would only be in lieu of a request being sent.

5-40 Embedded Communications Computing Web Site

System Calls

5

.NETFOPN

Name

.NETFOPN - Open file for reading

Code

$001B

Description

This routine allows the user to open a file for reading. The firmware
basically transmits a TFTP Read Request for the specified file and returns
to the user. It is your responsibility to retrieve the forthcoming file blocks;
you would use the .NETFRD system call to do this. You must also perform
the file block retrievals in a timely fashion, else the TFTP server will time-
out.

Information about the file open/request is passed in a command packet
which has been built in memory. (The user program must first manually
prepare the packet.) The address of the packet is passed as an argument to
the routine. All packets must be word-aligned.

The format of the packet structure, NFILEOPEN, is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04

$42

Filename String $40(&64) Bytes

System Call Routines

http://www.motorola.com/computer/literature 5-41

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number of device to use

Status Word This status word reflects the result of the operation. It
is zero if the command completed without errors.
Refer to Appendix H for meanings of returned error
codes.

Filename String The name of the file to load. The filename string must
be null terminated. The maximum length of the string
is 64 bytes, inclusive of the null terminator.

5-42 Embedded Communications Computing Web Site

System Calls

5

.NETFRD

Name

.NETFRD - Retrieve specified file blocks

Code

$001C

Description

This routine allows you to retrieve the specified file blocks. You would use
this routine multiple times to retrieve the entire file. Prior to using this
routine a .NETFOPN system call must have been performed. For each file
block retrieved the firmware will transmit a TFTP ACK packet to
acknowledge the receipt of data. The end of data will be signified when the
number of bytes transferred is smaller than the block size. The block size
is set at 512 bytes (TFTP convention). For each .NETFRD system call
performed, you must update (increment by one) the block number field of
the command packet. Initially the block number is one.

Information about the file block is passed in a command packet which has
been built in memory. (The user program must first manually prepare the
packet.) The address of the packet is passed as an argument to the routine.
All packets must be word-aligned. The format of the packet structure,
NFILEREAD, is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Data Transfer Address

Most Significant Word

$06 Least Significant Word

$08 Transfer Byte Count

$0A Block Number

$0C
Data Packet (File Block) Timeout

Most Significant Word

$0E Least Significant Word

System Call Routines

http://www.motorola.com/computer/literature 5-43

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number of device to use

Status Word This status word reflects the result of the operation. It is
zero if the command completed without errors. Refer to
Appendix H for meanings of returned error codes.

Data Transfer
Address

Address of buffer in memory to which to transfer the
file block.

Transfer Byte
Count

This field is status only and will be updated only on a
successful data transfer. The size of each file block is
512 bytes unless it is the last block of the file (0 to 511
bytes).

Block Count The next expected block number to be received.

Data Packet
Timeout

The number of seconds to wait before giving up control
to the caller.

5-44 Embedded Communications Computing Web Site

System Calls

5

.NETCTRL

Name

.NETCTRL - Implement special control routines

Code

$001D

Description

This routine is used to implement any special control routines that cannot
be accommodated easily with any of the other network routines. At the
present, the only defined packet is SEND packet, which allows you to send
a packet in the specified format to the specified network interface driver.
The required parameters are passed in a command packet which has been
built somewhere in memory.

The address of the packet is passed as an argument to the routine. This
routine effectively performs an NIOC command, but under program
control. All packets must be word-aligned. The format of the packet
structure, NIOCCALL, is shown below:

F E D C B A 9 8 7 6 5 4 3 2 1 0

$00 Controller LUN Device LUN

$02 Status Word

$04
Command Identifier

Most Significant Word

$06 Least Significant Word

$08
Memory Address (Data Transfers)

Most Significant Word

$0A Least Significant Word

$0C
Number of Bytes (Data Transfers)

Most Significant Word

$0E Least Significant Word

$10
Status/Control Flags

Most Significant Word

$12 Least Significant Word

System Call Routines

http://www.motorola.com/computer/literature 5-45

5

Field descriptions:

Controller LUN Logical Unit Number (LUN) of controller to use

Device LUN Logical Unit Number of device to use

Status Word This status word reflects the result of the operation. It
is zero if the command completed without errors.
Refer to Appendix H for meanings of returned error
codes.

Command Identifier The command operation type. The command types
(identifiers) are as follows:

0 Initialize device/channel/node

1 Get hardware (Ethernet) address (network
node)

2 Transmit (put) data packet

3 Receive (get) data packet

4 Flush receiver and receive buffers

5 Reset device/channel/node

Rules on commands:

The initialization (type 0) of the device/channel/node
must always be performed first. If you have booted or
initiated some other network I/O command, the
initialization would already have been done.

The flush receiver and receive buffer (type 4) would
be used if, for example, the current receive data is not
longer needed, or to provide a known buffer state
prior to initiating data transfers.

The reset device/channel/node (type 5) would be used
if another operating system (node driver) needs to be
in control of the device/channel/node. Basically, put
the device/channel/node to a known state.

Memory Address The memory address in which the data transfer
operation (types 1, 2, and 3) would take place from/to.

Number of Bytes The number of bytes of the data transfer.

5-46 Embedded Communications Computing Web Site

System Calls

5

Status/Control Flags This parameter specifies control and status flags as
needed by the operation types.

Bit #16 - Receive data transferred to user’s memory.

System Call Routines

http://www.motorola.com/computer/literature 5-47

5

.OUTCHR

Name

.OUTCHR - Output character routine

Code

$0020

Description

This routine outputs a character to the default output port.

Entry Conditions

R03: Bits 7 through 0: Character (byte)

Exit Conditions Different From Entry

Character is sent to the default I/O port.

5-48 Embedded Communications Computing Web Site

System Calls

5

.OUTSTR
.OUTLN

Names

.OUTSTR - Output string to default output port

.OUTLN - Output string with a <CR><LF> sequence

Codes

$0021

$0022

Description

.OUTSTR outputs a string of characters to the default output port.

.OUTLN outputs a string of characters followed by a <CR><LF> sequence.

Entry Conditions

R03: Address of first character

R04: Address of last character+1

Exit Conditions Different From Entry

None

System Call Routines

http://www.motorola.com/computer/literature 5-49

5

.WRITE
.WRITELN

Names

.WRITE - Output string without a <CR> or <LF>

.WRITELN - Output string with a <CR><LF> sequence

Codes

$0023

$0024

Description

These output routines are designed to output strings formatted with a count
byte followed by the characters of the string. The user passes the starting
address of the string. The output goes to the default output port.

Entry Conditions

R03: Address of string

Exit Conditions Different From Entry

None

Note The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the count (in bytes) of
the string. There is no special character at the end of the string as
a delimiter.

5-50 Embedded Communications Computing Web Site

System Calls

5

.PCRLF

Name

.PCRLF - Print a <CR><LF> sequence

Code

$0026

Description

.PCRLF sends a <CR><LF> sequence to the default output port.

Entry Conditions

No arguments required.

Exit Conditions Different From Entry

None

System Call Routines

http://www.motorola.com/computer/literature 5-51

5

.ERASLN

Name

.ERASLN - Erase Line

Code

$0027

Description

.ERASLN is used to erase the line at the present cursor position. If a printer
is used (hardcopy mode), a <CR><LF> sequence is issued instead.

Entry Conditions

No arguments required.

Exit Conditions Different From Entry

The cursor is positioned at the beginning of a blank line.

5-52 Embedded Communications Computing Web Site

System Calls

5

.WRITD
.WRITDLN

Names

.WRITD - Output string with data

.WRITDLN - Output string with data and a <CR><LF> sequence

Codes

$0028

$0025

Description

These trap routines take advantage of the monitor I/O routine which
outputs a user string containing embedded variable fields. The user passes
the starting address of the string and the address of a data list containing
the data which is inserted into the string. The output goes to the default
output port.

Entry Conditions

R03: Address of string

R04: Data list pointer. A separate data list arranged as follows:

Exit Conditions Different From Entry

None

Data list pointer Data for 1st variable in string

Data for next variable

Data for next variable

System Call Routines

http://www.motorola.com/computer/literature 5-53

5

Notes 1. The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the count (in bytes)
of the string (including the data field specifiers, described in
Note 2 below).

2. Any data fields within the string must be represented as
follows:

|radix,fieldwidth[Z]|

where:

radix is the hexadecimal value for the base in which the data
will be displayed (for example, A is base 10, and 10 is base 16.)

fieldwidth is the hexadecimal value for the number of
characters this data is to occupy in the output.

The data is right justified, and left-most characters are removed
to make the data fit. The Z is included if it is desired to suppress
leading zeros in output. The vertical bars (|) are required
characters.

3. All data is to be placed in the data list as 32-bit words. Each
time a data field is encountered in the user string, a word is read
from the data list to be displayed.

4. The data list is not destroyed by this routine.

5-54 Embedded Communications Computing Web Site

System Calls

5

.SNDBRK

Name

.SNDBRK - Send break

Code

$0029

Description

.SNDBRK is used to send a break to the default output port.

Entry Conditions

No arguments required

Exit Conditions Different From Entry

The current default output port has sent break.

System Call Routines

http://www.motorola.com/computer/literature 5-55

5

.DELAY

Name

.DELAY - Timer delay routine

Code

$0043

Description

.DELAY is used to generate accurate timing delays that are independent of
the processor frequency and instruction execution rate. This routine uses
the onboard timer for operation. You specify the desired delay count in
milliseconds. The .DELAY system call returns to the caller after the
specified delay count is exhausted.

Entry Conditions

R03: Delay time in milliseconds (word)

Exit Conditions Different From Entry

None

5-56 Embedded Communications Computing Web Site

System Calls

5

.RTC_TM

Name

.RTC_TM - Time initialization for RTC

Code

$0050

Description

.RTC_TM initializes Real-Time Clock with the time that is located in a
user-specified buffer.

The data input format can be either ASCII or unpacked BCD. The order of
the data in the buffer is:

Entry Conditions

R03: Time initialization buffer (address)

Exit Conditions Different From Entry

None

H H M M S S s c c

| |

begin
buffer

buffer +
eight
bytes

HH Hours

MM Minutes

SS Seconds

s Sign of calibration factor (+ or -)

cc Value of calibration factor

System Call Routines

http://www.motorola.com/computer/literature 5-57

5

.RTC_DT

Name

.RTC_DT - Date initialization

Code

$0051

Description

.RTC_DT initializes Real-Time Clock with the date that is located in a
user-specified buffer.

The data input format can be either ASCII or unpacked BCD. The order of
the data in the buffer is:

Entry Conditions

R03: Date initialization buffer (address)

Exit Conditions Different From Entry

None

Y Y M M D D d

| |

begin
buffer

buffer +
six bytes

YY Year

MM Month

DD Day of month

d Day of week (1 = Sunday)

5-58 Embedded Communications Computing Web Site

System Calls

5

.RTC_DSP

Name

.RTC_DSP - Display time from RTC

Code

$0052

Description

.RTC_DSP displays the date and time on the console from the current
cursor position. The format is as follows:

DAY MONTH DD, YYYY hh:mm:ss.s

Entry Conditions

No arguments required

Exit Conditions Different From Entry

The cursor is left at the end of the string.

DAY Day

MONTH Month

DD Day of month

YYYY Year

hh Hour

mm Minute

ss.s Second (to nearest tenth)

System Call Routines

http://www.motorola.com/computer/literature 5-59

5

.RTC_RD

Name

.RTC_RD - Read the RTC registers

Code

$0053

Description

.RTC_RD is used to read the Real-Time Clock registers. The data returned
is in packed BCD.

The order of the data in the buffer is:

Entry Conditions

R03: Buffer address where RTC data is to be returned

Exit Conditions Different From Entry

Buffer now contains date and time in packed BCD format.

Y M D d H M S c

| |

begin
buffer

buffer +
eight
bytes

Y Year (2 nibbles packed BCD)
M Month (2 nibbles packed BCD)
D Day of month (2 nibbles packed BCD)
d Day of week (2 nibbles packed BCD)
H Hour of 24 hour clock (2 nibbles packed BCD)
M Minute (2 nibbles packed BCD)
S Seconds (2 nibbles packed BCD)
c Calibration factor (MS nibble = 0 negative, 1 positive, LS

nibble = value)

5-60 Embedded Communications Computing Web Site

System Calls

5

.REDIR

Name

.REDIR - Redirect I/O routine

Code

$0060

Description

.REDIR is used to select an I/O port and at the same time invoke a
particular I/O routine. The invoked I/O routine reads or writes to the
selected port.

Entry Conditions

R03: Port
R04: I/O routine to call
R05: R03 as required by the invoked System Call routine
R06: R04 as required by the invoked System Call routine
R07: R05 as required by the invoked System Call routine
R08: R06 as required by the invoked System Call routine

Exit Conditions Different From Entry

R03: May be changed by I/O routine

System Call Routines

http://www.motorola.com/computer/literature 5-61

5

.REDIR_I
.REDIR_O

Name

.REDIR_I - Redirect input

.REDIR_O - Redirect output

Codes

$0061

$0062

Description

The .REDIR_I and .REDIR_O system calls are used to change the default
port number of the input and output ports, respectively. This is a permanent
change, that is, it remains in effect until a new .REDIR command is issued.

Entry Conditions

R03: Port Number (word)

Exit Conditions Different From Entry

R03: Is set to $FFFFFFFF if invalid port number was specified, otherwise
PPCBug console input (output) is redirected to the specified port number.

5-62 Embedded Communications Computing Web Site

System Calls

5

.RETURN

Name

.RETURN - Return to PPCBug

Code

$0063

Description

.RETURN is used to return control to PPCBug from the target program in
an orderly manner. First, any breakpoints inserted in the target code are
removed. Then, the target state is saved in the register image area. Finally,
the routine returns to PPCBug.

Entry Conditions

No arguments required.

Exit Conditions Different From Entry

Control is returned to PPCBug.

Note .RETURN must be used only by code that was started using
PPCBug.

System Call Routines

http://www.motorola.com/computer/literature 5-63

5

.BINDEC

Name

.BINDEC - Calculate the Binary Coded Decimal (BCD) equivalent of the
binary number specified

Code

$0064

Description

.BINDEC takes a 32-bit unsigned binary number and changes it to an
equivalent BCD number.

Entry Conditions

R03: Argument: Hex number

Exit Conditions Different From Entry

R03: Bits 31 through 8: Zero
R03: Bits 7 through 0: Decimal number (two most significant DIGITS)
R04: Decimal number (next eight DIGITS)

5-64 Embedded Communications Computing Web Site

System Calls

5

.CHANGEV

Name

.CHANGEV - Parse value, assign to variable

Code

$0067

Description

Attempt to parse value in user-specified buffer. If user’s buffer is empty,
prompt user for new value, otherwise update integer offset into buffer to
skip value. Display new value and assign to variable unless user’s input is
an empty string.

Entry Conditions

R03: Address of 32-bit offset into user’s buffer
R04: Address of user’s buffer (pointer/count format string)
R05: Address of 32-bit integer variable to change
R06: Address of string to use in prompting and displaying value

Exit Conditions Different From Entry

None.

System Call Routines

http://www.motorola.com/computer/literature 5-65

5

.STRCMP

Name

.STRCMP - Compare two strings (pointer/count)

Code

$0068

Description

Comparison for equality is made and Boolean flags are returned to caller.

Entry Conditions

R03: Address of string 1
R04: Address of string 2

Exit Conditions Different From Entry

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0, if strings are not equal.
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1, if strings are equal.

5-66 Embedded Communications Computing Web Site

System Calls

5

.MULU32

Name

.MULU32 - Unsigned 32-bit x 32-bit multiply

Code

$0069

Description

Two 32-bit unsigned integers are multiplied and the product is returned as
a 32-bit unsigned integer. No overflow checking is performed.

Entry Conditions

R03: 32-bit multiplier
R04: 32-bit multiplicand

Exit Condition Different From Entry

R03: 32-bit product (result from multiplication)

System Call Routines

http://www.motorola.com/computer/literature 5-67

5

.DIVU32

Name

.DIVU32 - Unsigned 32-bit x 32-bit divide

Code

$006A

Description

Unsigned division is performed on two 32-bit integers and the quotient is
returned as a 32-bit unsigned integer. The case of division by zero is
handled by returning the maximum unsigned value $FFFFFFFF.

Entry Conditions

R03: 32-bit divisor (value to divide by)
R04: 32-bit dividend (value to divide)

Exit Condition Different From Entry

R03: 32-bit quotient (result from division)

5-68 Embedded Communications Computing Web Site

System Calls

5

.CHK_SUM

Name

.CHK_SUM - Generate checksum for address range

Code

$006B

Description

This routine generates a checksum for an address range
that is passed in as arguments.

Entry Conditions

R03: Beginning address
R04: Ending address + 1
R05: Scale indicator. Values are:

0 Default setting (WORD)
1 BYTE
2 HALF-WORD
4 WORD

Exit Conditions Different From Entry

R03: Checksum

Notes 1. If a Bus Error results from this routine, then the debugger
bus error exception handler is invoked and the calling routine
is also aborted.

2. The calling routine must insure that the beginning and ending
addresses are on word boundaries or the integrity of the
checksum cannot be guaranteed.

System Call Routines

http://www.motorola.com/computer/literature 5-69

5

.BRD_ID

Name

.BRD_ID - Return pointer to board ID packet

Code

$0070

Description

This routine returns a pointer in R03 to the board identification packet. The
packet is built at initialization time and contains information about the
PowerPC board and peripherals it supports.

The format of the board identification packet is shown below:

Field descriptions:

31 24 23 16 15 8 7 0

$00 Eye Catcher

$04 Rev. Month Day Year

$08 Packet Size Reserved

$0C Board Number Board Suffix

$10 Options (such as coprocessor) Family CPU

$14 Controller LUN Device LUN

$18 Device Type Device Number

$1C Option-2

Eye Catcher Word containing ASCII string “BDID”

Rev. Byte containing PPCBug revision (in BCD)

Month, Day, Year Three Bytes containing date (in BCD) the PPCBug
code was frozen

Packet Size Half-Word containing the size of the packet

Reserved Reserved for future use

5-70 Embedded Communications Computing Web Site

System Calls

5

Refer to Appendix G for data on supported network controllers.

Board Number Half-Word containing the board number (in BCD)

Board Suffix Half-Word containing the ASCII board suffix (e.g.
XT, A, 20)

Options:

bits 0-3 Four bits containing CPU type:

CPU = 1; MPC620

CPU = 1; MPC601

CPU = 2; MPC602

CPU = 3; MPC603

CPU = 4; MPC604

bits 4-6 Three bits containing the Family type:

Fam = 2; MPC600 family

bits 7-31 The remaining bits define various board specific
options:

Bit 7 set = FPC present

Bit 8 set = MMU present

Bit 9 set = MMB present

Controller LUN The Logical Unit Number for the boot device
controller (refer to Appendices E and G)

Device LUN The Logical Unit Number for the boot device (refer to
Appendices E and G)

Device Type The device type of the boot device (refer to the
following table)

Option-2 Reserved for future use (zero in this implementation)

System Call Routines

http://www.motorola.com/computer/literature 5-71

5

Entry Conditions

None

Exit Conditions Different From Entry

R03: Address (word) Starting address of ID packet

Device
Type

Device

00 Direct-Access Device (e.g., magnetic disk)

01 Sequential-Access Device (e.g., magnetic tape)

02 Printer Device

03 Processor Device

04 Write-Once Read-Multiple Device (e.g., some optical devices)

05 CD-ROM Device

06 Scanner Device

07 Optical Memory Device (e.g., some optical devices)

08 Medium Changer Device (e.g., jukeboxes)

09 Communications Device

5-72 Embedded Communications Computing Web Site

System Calls

5

.ENVIRON

Name

.ENVIRON - Read/write environment parameters

Code

$0071

Description

The purpose of the TRAP is to allow a user program access to certain
debugger environmental parameters. These parameters include default
boot devices and start-up configurations.

Entry Conditions

R03: Parameter storage buffer
R04: Size of the storage buffer
R05: Operation type:

Exit Conditions Different From Entry

For operations 1 & 2

0 Size in bytes of the information the debugger will pass

1 Update the NVRAM with environmental parameters passed

2 The debugger will update your parameter storage buffer with
environmental information from the NVRAM.

R03:

0 No errors encountered, operation completed

1 Debugger has more data than the passed buffer could
hold.

Partial data transferred:

1 Checksum error occurred during the write update
(write only)

System Call Routines

http://www.motorola.com/computer/literature 5-73

5

For operation 0

R03: The number of bytes required to store the debugger information.

Description Of Parameter Packets

The data contained in the parameter storage area is organized as a set of
data packets. Each data packet has the following structure:

Supported packets and formats:

7 0

Identifier

Number of bytes
left

in packet

data

data

0 End of the list (End Record)

0

0

1 PPCBug Start-Up Parameters

1

$6

System or debugger environment flag

Field service menu flag

Remote start method flag

Probe system for controllers flag

Negate SYSFAIL always flag

Reset local SCSI on board reset flag

2 Disk Auto Boot Information

5-74 Embedded Communications Computing Web Site

System Calls

5

2

$15

Disk Auto Boot Enable

Disk Auto Boot at power-up only

Disk Auto Boot Controller Logical Unit Number

Disk Auto Boot Device Logical Unit Number

Disk Auto Boot Abort Delay

Disk Auto Boot String to be passed to load program ($10
bytes in length)

3 ROM Boot Information

3

$C

ROM Boot Enable

ROM Boot at power-up only

ROM Boot from VME bus

ROM Boot Abort Delay

ROM Boot Starting Address (4 bytes in length)

ROM Boot Ending Address (4 bytes in length)

4 NetBoot Information

4

 $9

NetBoot Enable

NetBoot at power up only

NetBoot Controller Logical Unit Number

NetBoot Device Logical Unit Number

NetBoot Abort Delay

NetBoot parameter pointer (4 bytes in length)

5 Memory Size Information

System Call Routines

http://www.motorola.com/computer/literature 5-75

5For an explanation of each entry and definition of options, refer to the ENV
command.

The debugger will return all parameter packets on a read. During a write
you may return only the packets that need to be updated; however, the
packet may not be returned out of order.

During an update, entries that have specific values will be verified. If an
entry is in error, that parameter will be unchanged.

5

$9

Memory Size Enable ($4E or $59)

Memory Size Starting Address (4 bytes)

Memory Size Ending Address (4 bytes)

5-76 Embedded Communications Computing Web Site

System Calls

5

.PFLASH Function

Name

.PFLASH - Program Flash memory

Code

$0073

Description

The purpose of this TRAP is to program Flash memory under program
control. The address of the packet is passed as an argument to the function.
The address of the packet is passed in the longword memory location
pointed to by the current stack pointer. The packet contains the necessary
arguments/data to program the Flash memory.

Entry Conditions

R03 ==> Address: Starting address of control packet word

Exit Conditions Different From Entry

None

Format of Flash Memory Control Packet

The Flash Memory Control Packet must be word (32 bit) aligned.

31 24 23 16 15 8 7 0

$00 Status Word Control Word

$04 Source Starting Address

$08 Number of Bytes to Program

$0C Destination Starting Address

$10 Instruction Execution Address

System Call Routines

http://www.motorola.com/computer/literature 5-77

5

Field descriptions:

Control/Status Word Specifies control and status of the various phases of
the Flash memory programming. This parameter has
two 16-bit parts: bits #31 to #16 specify status and
bits #15 to #0 specify control.

Source Starting
Address

Specifies the source starting address of the data
with which to program the Flash memory. Word
(32-bit) address alignment is required for this
parameter.

Number of Bytes to
Program

Specifies the number of bytes of the source data
(or the number bytes to program the Flash
memory with). Word (32-bit) address alignment
is required for this parameter.

Destination Starting
Address

Specifies the starting address of the Flash
memory to program the source data with. Word
(32-bit) address alignment is required for this
parameter.

Instruction
Execution Address

Specifies the instruction execution address to be
executed upon completion of the Flash memory
programming. This parameter must meet the
syntax of the reset vector of the applicable MPU
architecture of the host product. This parameter
is qualified with a control bit in the control/status
word; execution will only occur when the control
bit is set and no errors occur during
programming/verification. This non-execution
on error can be invalidated by yet another control
bit in the control/status word.

5-78 Embedded Communications Computing Web Site

System Calls

5

The next table describes the definitions of the control and status bits in the
Control/Status Word field.

Note: When programming the Flash device in which the Flash
memory is executing, bit 4 will have no effect. All
programming operations that involve the Flash device in
which the Flash memory is executing will be NON-
VERBOSE.

Type
Bit

Position
Definition

Control 0 Execution address valid.

Control 1 Execute address on error as well.

Control 2 Execute local reset.

Control 3 Execute local reset on error as well.

Control 4 Non-verbose, no display messages. (NOTE)

Control 5-15 Unused, Reserved

Status 16 Error of some type, see remaining status bits.

Status 17 Address/Range alignment error.

Status 18 Flash Memory address range error.

Status 19 Flash Memory erase error.

Status 20 Flash Memory write error.

Status 21 Verification (read after write) error.

Status 22 Time-Out during erase operation.

Status 23 Time-Out during byte write operation.

Status 24 Unexpected manufacturer identifier read from the device.

Status 25 Unexpected device identifier read from the device.

Status 26 Unable to initialize the Flash device to zero.

Status 27-29 Unused, Reserved

Status 30 Flash Memory program control driver downloaded.

Status 31 No return possible to caller.

System Call Routines

http://www.motorola.com/computer/literature 5-79

5

.DIAGFCN

Name

.DIAGFCN - Diagnostic routine

Code

$0074

Description

.DIAGFCN is a system-call-like routine, for the diagnostics. This system
call provides the debugger and external software (operating systems) with
a single-point-of-entry to information maintained by the firmware
diagnostics.

The .DIAGFCN system call requires a single argument, which is a pointer
to a diagfcn struct. This struct contains an ’unsigned int’ which is the
number of the diagnostic routine being requested, and a pointer to
arguments for the routine to be executed:

unsigned int DIAGFCN number to execute
char * pointer to function arguments

This system call implements four diagnostic functions:

01: .CHKFCN (check function)

02: .TESTSTAT (output test status report)

03: .MEMSTAT (memory status)

04: .ST_NMLIST (selftest name list)

01: .CHKFCN (check function)

The purpose of this function is to determine whether a given diagfcn is
present in this revision of firmware. The argument pointer in the diagfcn
struct simply points to an unsigned int variable, containing the diagfcn
number to test for. If it exists, the syscall will return zero.

5-80 Embedded Communications Computing Web Site

System Calls

5

02: .TESTSTAT (output test status report)

This diagcfn call allows access to selftest diagnostic results. The calling
function must supply the diagcfn call with a pointer to two arguments (a
structure containing two members):

struct ts_bufps
{
unsigned int size;
void *bufptr;
}

‘bufptr’ points to a buffer in memory, where the first ‘sizeof(int)’ bytes are
reserved for an integer ‘count’ variable, and the rest of the buffer is
reserved as a ‘char’ array for ASCII string data:

struct ts_bufs
{
unsigned int count;
unsigned char buf[1];}

The calling function typically first makes a call with the ‘size’ set to
‘sizeof(int)’, and ‘bufptr’ pointing to a section of R/W memory, ‘size’
bytes long. This causes the TESTSTAT function to calculate how large a
buffer will be required to contain the test status report. The calculated
value, plus ‘sizeof(int)’, will be returned in the location pointed to by
‘bufptr’.

int ’size’

void *bufptr -------------------------> int count

(char buf)

B

U

F

F

E

R

System Call Routines

http://www.motorola.com/computer/literature 5-81

5

The caller will then typically allocate the number of bytes of memory
requested for the report, and call the TESTSTAT function again. This time,
the ‘size’ passed in should be at least as large as the count returned by the
previous call to TESTSTAT. This function will then recalculate the
memory required, compare that to the amount of memory supplied, and
either return an error if insufficient buffer space has been allocated, or
generate the report and append it to the count at the location pointed to by
‘bufptr’.

The test result strings placed in the buffer will have the format:

DEL Dir_Name DEL Test_Name DEL Description DEL F|P|B|M|N|E|? 0

The N and E status is stored for each test at diag init time (on reset),
depending on whether the test is of type T_TEST (a ‘regular’ test) or
T_EVAL (a test that is only run manually). This is the only time these
values will be stored for a test. All other status types destructively
overwrite this initial value.

The M status will be saved for a test, whenever the test is executed, if
masking has been enabled for this test. It will only overwrite an N status
(and not an E).

The B status indicates a test has decided not to run, due to some
configuration limitation (an example would be when the MCECC tests
report bypassed on a CPU that only contains parity-type RAM). The B
status will overwrite the M, N, and E status.

Where DEL is a delimiter, either a semi-colon or a space

0 is a zero

F if the test has ever failed since the last reset

P if the test has executed to completion without failure

B if the test has been bypassed since the last reset

M if the test has been masked by the operator

N if the test has not been executed since the last reset

E if the test is an ‘eval’ type, and is normally not executed.

? if an invalid test index is generated internal to the debugger.
This should never occur.

5-82 Embedded Communications Computing Web Site

System Calls

5

The P status will only ever be saved, if the previous status for the test was
B, M, N, or E. A P status will never overwrite an F status. If a test is aborted
before completion, the previous status will remain, even if the test was
passing up to the point of the abort.

The F status will overwrite all other values, and will never be changed
without a reset.

These status strings are appended together in the buffer supplied by the
caller. The initial delimiter character of each test result string should be
read by the calling function, and used as the character to search for, when
looking for separation between ‘words’ of the result. Each single test result
string could have a different delimiter. The 0 following each result string
indicates the start of the next result.

A hex dump of report data might look like:

100 00000204 (‘count’)
104 5F 72 61 6D 5F 71 75 69 6B 5F 51 75 69 63 6B 20 _ram_quik_Quick
114 57 72 69 74 65 2F 52 65 61 64 5F 4E 00 5F 72 61 Write/Read_N._ra
124 6D 5F 61 6C 74 73 5F 41 6C 74 65 72 6E 61 74 69 m_alts_Alternati
134 6E 67 20 4F 6E 65 73 2F 5A 65 72 6F 65 73 5F 4E ng Ones/Zeroes_N
144 00 5F 72 61 6D 5F 70 61 74 73 5F 50 61 74 74 65 ._ram_pats_Patte
154 72 6E 73 5F 4E 00 5F 72 61 6D 5F 61 64 72 5F 41 rns_N._ram_adr_A
164 64 64 72 65 73 73 61 62 69 6C 69 74 79 5F 4E 00 ddressability_N.
174 5F 72 61 6D 5F 63 6F 64 65 5F 43 6F 64 65 20 45 _ram_code_Code E
. . .

This function will return an integer status. 0 (zero) is returned upon
success. A result of -1 is returned if an error in the system call function
occurred:

if (0 <= size < 4)
return -1;

if (size == 4)
write ‘count’ to ‘bufptr’ location in RAM
return 0;

if (4 < size < count)
write ‘count’ to ‘bufptr’ location in RAM

 return -1;

if (count <= size)
write ‘count’ to ‘bufptr’ location in RAM
write status report to ‘bufptr + sizeof(int)’ in RAM
return 0;

System Call Routines

http://www.motorola.com/computer/literature 5-83

5

The result is returned in R03

03: .MEMSTAT (memory status)

This function implements a report mechanism for main memory
diagnostics. This report is always of a fixed size, and can therefore be
called by higher level software that can not dynamically allocate buffer
space.

This function reports combined status for each of certain test directories.
This list includes RAM, MCECC, MEMC1, MEMC2, and ECC.

In the case of RAM tests, they cover a range of memory, and typically
contain nothing that is board-specific.

The MCECC and ECC tests do contain board-specific code, and will cover
segments of memory, rather than a single range. In this case, these tests
will likely appear in the report multiple times, once for each segment of
memory.

Since the test is only ever run once, over all segments, the status result will
be identical for all reported instances. If one of the segments covered does
not contain an ECC type of memory board, the results will contain a zero
address range (beginning address = ending address).

The MEMC1 and MEMC2 tests are on a per-board basis. These tests are
intended for the parity memory board, but contain one or more tests that
are also appropriate for the MCECC memory board. Each test covers one
segment of memory on the board under test.

This report may return:

1. Walk down through the diag directory, looking for test groups that
match our list.

N not executed

B bypassed

P passed

F failed

5-84 Embedded Communications Computing Web Site

System Calls

5

2. When a match is found, walk down through the tests, ignore any
functions that are not of the type T_TEST, check the status for each
test (using the test index to look in the diagctl teststat array).

3. Create an overall status for the test group P, F, N, or B:

The upper address bound and lower address bound passed back to the
caller, should be initialized to the values of the Memory Size Ending
Address and the Memory Size Starting Address from NVRAM. These
values to be returned should be overridden by any test configuration
parameters (CF params) that might exist for the applicable test. A function
will be inserted in each of the memory test groups that can be called and
will return the upper and lower bounds.

The argument pointer in the diagfcn struct points to the report buffer. This
buffer is 452 bytes long, and has the structure:

P Passed, which is returned when all of the T_TEST type functions
in the test group have posted a ‘passed’ status. Any test in the
group posting other than ‘passed’ will cause a different status to
be returned.

F Failed, which is returned if any test of type T_TEST in the test
group has posted a ‘failed’ status

N Not Executed, which is returned if any test in the group of type
T_TEST was not executed. If any of the tests posted a ‘failed’
status, F is returned.

B Bypassed, which is returned if all of the T_TYPE functions in the
test group have posted a bypassed status

unsigned int number of valid entries

Entry 1 unsigned int
unsigned int
unsigned int
char[16]

upper address bound
lower address bound
combined test status (P|F|N|B)
test group name (NULL terminated)

Entry 2 unsigned int
unsigned int
unsigned int
char[16]

upper address bound
lower address bound
combined test status (P|F|N|B)
test group name (NULL terminated)

System Call Routines

http://www.motorola.com/computer/literature 5-85

5MEMSTAT will return a zero from the system call if there were no errors.

04: .ST_NMLIST (selftest name list)

This function will walk through the selftest directory structure, and
generate a report consisting of test and group names that are present.

The report contains test group name, as well as the specific test name.
Format of the list is the same as that for the .TESTSTAT diag syscall.

Each string in the list begins with the separator (unique delimiter character)
that is to be used in the current line. The test group name comes next,
followed by a separator. Next is the test name, followed by a NULL (\0).
For example, #ram#pats<0>.

The caller must provide a pointer to a structure when calling this function.
The structure first contains an ’int’ (4 bytes) giving the size of an available
buffer to be used for output from this function. This ’int’ is immediately
followed by the address (4 bytes) of the start of the buffer.

If this function is called with the ’size’ set to ’sizeof(int)’ (4), then this
function will return a single integer (4 bytes) in the buffer, containing the
size of buffer needed to contain the list and the size. To get the list, the
function needs to be called with a buffer ’size’ at least as large as is
reported in the first call. Anything smaller will result in a non-zero return
status, and the list will not be generated.

.

.

.

Entry 16 unsigned int
unsigned int
unsigned int
char[16]

upper address bound
lower address bound
combined test status (P|F|N|B)
test group name (NULL terminated)

unsigned int number of valid entries

5-86 Embedded Communications Computing Web Site

System Calls

5

The caller should place the structure pointer in processor register R03. An
integer result will be returned, in place of the pointer passed in to this
function. A zero (0) result indicates success, non-zero indicates failure.

Entry Conditions

R03 contains the diagfcn struct address.

Exit Conditions Different From Entry

An integer status to the higher level is returned in R03.

Examples

Example 1: .CHKFCN

PPC1-Bug>MM 10100;DI <Return>
00010100 59200074 SYSCALL .DIAGFCN <Return>
00010108 59200063 SYSCALL .RETURN <Return>

PPC1-Bug>RM R02 (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20000 <Return>
00020000 00000000? 1 <Return> (DIAGFCN #1, .CHKFCN)
00020004 00000000? 20008 <Return> (pointer to variable arguments)
00020008 00000000? 3 . <Return> (DIAGFCN # to verify)

PPC1-Bug>GO 10100 <Return> (check for the existence of DIAGFCN)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (0=FCN AVAIL)
R03 =00000000? . <Return>

int ’size’

void *bufptr -------------------------> int count

(char buf)

B

U

F

F

 E

R

System Call Routines

http://www.motorola.com/computer/literature 5-87

5

Example 2: .TESTSTAT

PPC1-Bug>MM 10100;DI <Return>
00010100 59200074 SYSCALL .DIAGFCN <Return>
00010108 59200063 SYSCALL .RETURN <Return>

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20000 <Return>
00020000 00000000? 2 <Return> (DIAGFCN #2, .TESTSTAT)
00020004 00000000? 20008 <Return> (pointer to variable arguments)
00020008 00000000? 4 <Return> (size of buffer)
0002000c 00000000? 20100 . <Return> (pointer to buffer)

PPC1-Bug>BF 20100:800 FFFFFFFF <Return>
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (get buffer size needed for report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

PPC1-Bug>MM 20100 <Return>
00020100 000013B5? . <Return> (need ’13B5’ bytes for report)

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20008 <Return> (size of buffer)
00020008 00000000? 13B5 . <Return>

PPC1-Bug>BF 20100:800 FFFFFFFF <Return>
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (generate a report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

5-88 Embedded Communications Computing Web Site

System Calls

5

PPC1-Bug>MD 20104 <Return> (display report)
00020104 2372616D 23717569 6B235175 69636B20 #ram#quik#Quick
00020114 57726974 652F5265 6164234E 00237261 Write/Read#N.#ra
00020124 6D23616C 74732341 6C746572 6E617469 m#alts#Alternati
00020134 6E67204F 6E65732F 5A65726F 6573234E ng Ones/Zeroes#N
00020144 00237261 6D237061 74732350 61747465 .#ram#pats#Patte
00020154 726E7323 4E002372 616D2361 64722341 rns#N.#ram#adr#A
00020164 64647265 73736162 696C6974 79234E00 ddressability#N.
00020174 2372616D 23636F64 6523436F 64652045 #ram#code#Code E

Example 3: .MEMSTAT

PPC1-Bug>MM 10100;DI <Return>
00010100 59200074 SYSCALL .DIAGFCN <Return>
00010108 59200063 SYSCALL .RETURN <Return>

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20000 <Return>
00020000 00000000? 3 <Return> (DIAGFCN #3, .MEMSTAT)
00020004 00000000? 20100 . <Return> (pointer to arguments -- output buffer)

PPC1-Bug>BF 20100:100 FFFFFFFF <Return>
Effective address: 00020100
Effective count : &1024

PPC1-Bug>GO 10100 <Return> (output the RAM test status report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

System Call Routines

http://www.motorola.com/computer/literature 5-89

5

PPC1-Bug>MD 20100:40 <Return> (display report)
00020100 00000005 00000000 00000000 0000004EN
00020110 72616D00 00000000 00000000 00000000 ram.............
00020120 00000000 00000000 0000004E 6D636563Nmcec
00020130 63000000 00000000 00000000 00000000 c...............
00020140 00000000 0000004E 6D636563 63000000Nmcecc...
00020150 00000000 00000000 00000000 00000000
00020160 0000004E 6D656D63 31000000 00000000 ...Nmemc1.......
00020170 00000000 00000000 00000000 0000004EN
00020180 6D656D63 32000000 00000000 00000000 memc2...........
00020190 00000000 00000000 00000000 00000000
000201A0 00000000 00000000 00000000 00000000
000201B0 00000000 00000000 00000000 00000000
000201C0 00000000 00000000 00000000 00000000
000201D0 00000000 00000000 00000000 00000000
000201E0 00000000 00000000 00000000 00000000
000201F0 00000000 00000000 00000000 00000000

Example 4: .ST_NMLIST

PPC1-Bug>MM 10100;DI <Return>
00010100 59200074 SYSCALL .DIAGFCN <Return>
00010108 59200063 SYSCALL .RETURN <Return>

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000 . <Return>

PPC1-Bug>MM 20000 <Return>
00020000 00000000? 4 <Return> (DIAGFCN #4, .ST_NMLIST)
00020004 00000000? 20008 <Return> (pointer to variable arguments)
00020008 00000000? 4 <Return> (size of buffer)
0002000C 00000000? 20100 . <Return> (pointer to buffer)

PPC1-Bug>BF 20100:800 FFFFFFFF <Return>
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (get buffer size needed for report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

PPC1-Bug>MM 20100 <Return>
00020100 00000AFE? . <Return> (need ’AFE’ bytes for report)

PPC1-Bug>RM R02 <Return> (pointer to DIAGFCN struct)
R03 =00000000? 20000. <Return>

5-90 Embedded Communications Computing Web Site

System Calls

5

PPC1-Bug>MM 20008 <Return> (size of buffer)
00020008 00000000? AFE . <Return>

PPC1-Bug>BF 20100:800 FFFFFFFF <Return>
Effective address: 00020100
Effective count : &8192

PPC1-Bug>GO 10100 <Return> (generate a report)
Effective address: 00010100

PPC1-Bug>RM R02 <Return> (check return status, 0=OK)
R03 =00000000? . <Return>

PPC1-Bug>MD 20104 <Return> (display report)
00020104 2372616D 23717569 6B002372 616D2361 #ram#quik.#ram#a
00020114 6C747300 2372616D 23706174 73002372 lts.#ram#pats.#r
00020124 616D2361 64720023 72616D23 636F6465 am#adr.#ram#code
00020134 00237261 6D237065 726D0023 72616D23 .#ram#perm.#ram#
00020144 726E646D 00237261 6D236274 6F670023 rndm.#ram#btog.#
00020154 72616D23 70656400 2372616D 23726566 ram#ped.#ram#ref
.
.
.
00020BE4 23636368 62797000 23636D6D 756D7075 #cchbyp.#cmmumpu
00020BF4 33236363 68636F64 6500FFFF FFFFFFFF 3#cchcode.......

System Call Routines

http://www.motorola.com/computer/literature 5-91

5

.SIOPEPS

Name

.SIOPEPS - Retrieve SCSI pointers

Code

$0090

Description

The purpose of this TRAP is to allow a user program to access the SCSI
I/O Processor package contained in the PPCBug ROMs. This TRAP
returns a list of pointers and table sizes that the user program uses to move
the SCSI I/O Processor package from ROM to RAM. The SIOP package
cannot be executed by a user program without being moved and edited. For
instructions on how to move and edit the SIOP package, refer to the
documentation for the SCSI I/O controller (refer to Appendix A, Related
Documentation).

Entry Conditions

None

Exit Conditions Different From Entry

R03: Pointer to the SIOP pointer and size table.

Description of SIOP Pointer and Size Table Packet

Format for packet containing SIOP pointers and table sizes. All entries are
4 bytes in length.

siop_init Initialization routine entry

siop_cmd Command entry point entry

siop_int Interrupt handler entry

sdt_tinit SIOP debug trace initialization entry

sdt_alloc SIOP debug trace memory allocation entry

relocation Pointer to the relocation table for NCR scripts

5-92 Embedded Communications Computing Web Site

System Calls

5

script_ptr Pointer to the NCR scripts index pointer array

script_ptr_sz Size of the NCR scripts index pointer array

script_array_sz Size of the scripts array

System Call Routines

http://www.motorola.com/computer/literature 5-93

5

.FORKMPU Function

Note This is a PPCBug system call for MVME4600 series or Dual
Processor MTX motherboards.

Name

.FORKMPU - Fork MPU (Multiple MPU Configuration)

Code

$0100

Description

.FORKMPU allows you to Fork (execute target code) on an MPU that is
idle. The MPU register R1 is set to the user stack space. Interrupts are also
disabled at the processor MSR register.

Entry Conditions

R03 ==> MPU number (i.e., 0-1)
R04 ==> Instruction Pointer of target code

Exit Conditions Different from Entry

R03 ==> 0, successful fork
-1, processor not idle
-2, null or not word-aligned IP
-3, invalid processor number

R04 ==> No change

5-94 Embedded Communications Computing Web Site

System Calls

5

.FORKMPUR Function

Note This is a PPCBug system call for MVME4600 or dual processor
MTX motherboards.

Name

.FORKMPUR - Fork Idle MPU with Register Set

Code

$0101

Description

This routine loads the user register set into the specified MPU (load and
go). This command is analogous to the BUG command FORKWR. Refer
to Chapter 3 for the command description. Read only registers are not
restored but are present in the list.

The format of the register set is shown below:

31 24 23 16 15 8 7 0
$000 GPR00
$004 GPR01
$008 GPR02
$00C GPR03
$010 GPR04
$014 GPR05
$018 GPR06
$01C GPR07
$020 GPR08
$024 GPR09
$028 GPR10
$02C GPR11
$030 GPR12
$034 GPR13
$038 GPR14
$03C GPR15
$040 GPR16
$044 GPR17
$048 GPR18
$04C GPR19
$050 GPR20
$054 GPR21

System Call Routines

http://www.motorola.com/computer/literature 5-95

5

$058 GPR22
$05C GPR23
$060 GPR24
$064 GPR25
$068 GPR26
$06C GPR27
$070 GPR28
$074 GPR29
$078 GPR30
$07C GPR31
$080 FPR00
$088 FPR01
$090 FPR02
$098 FPR03
$0A0 FPR04
$0A8 FPR05
$0B0 FPR06
$0B8 FPR07
$0C0 FPR08
$0C8 FPR09
$0D0 FPR10
$0D8 FPR11
$0E0 FPR12
$0E8 FPR13
$0F0 FPR14
$0F8 FPR15
$100 FPR16
$108 FPR17
$110 FPR18
$118 FPR19
$120 FPR20
$128 FPR21
$130 FPR22
$138 FPR23
$140 FPR24
$148 FPR25
$150 FPR26
$158 FPR27
$160 FPR28
$168 FPR29
$170 FPR30
$178 FPR31
$180 SR00
$184 SR01
$188 SR02
$18C SR03
$190 SR04
$194 SR05

31 24 23 16 15 8 7 0

5-96 Embedded Communications Computing Web Site

System Calls

5

$198 SR06
$19C SR07
$1A0 SR08
$1A4 SR09
$1A8 SR10
$1AC SR11
$1B0 SR12
$1B4 SR13
$1B8 SR14
$1BC SR15
$1C0 SPR00
$1C4 SPR01
$1C8 SPR04
$1CC SPR05
$1D0 SPR06
$1D4 SPR08
$1D8 SPR09
$1DC SPR18
$1E0 SPR19
$1E4 SPR20
$1E8 SPR21
$1EC SPR22
$1F0 SPR25
$1F4 SPR26
$1F8 SPR27
$1FC SPR268
$200 SPR269
$204 SPR272
$208 SPR273
$20C SPR274
$210 SPR275
$214 SPR282
$218 SPR283
$21C SPR285
$220 SPR287
$224 SPR528
$228 SPR529
$22C SPR530
$230 SPR531
$234 SPR532
$238 SPR533
$23C SPR534
$240 SPR535
$244 SPR536
$248 SPR537
$24C SPR538
$250 SPR539
$254 SPR540
$258 SPR541

31 24 23 16 15 8 7 0

System Call Routines

http://www.motorola.com/computer/literature 5-97

5

Field descriptions:

$25C SPR542
$260 SPR543
$264 SPR936
$268 SPR937
$26C SPR938
$270 SPR939
$274 SPR940
$278 SPR941
$27C SPR942
$280 SPR952
$284 SPR953
$288 SPR954
$28C SPR955
$290 SPR956
$294 SPR957
$298 SPR958
$29C SPR976
$2A0 SPR977
$2A4 SPR978
$2A8 SPR979
$2AC SPR980
$2B0 SPR981
$2B4 SPR982
$2B8 SPR984
$2BC SPR986
$2C0 SPR987
$2C4 SPR990
$2C8 SPR991
$2CC SPR1008
$2D0 SPR1009
$2D4 SPR1010
$2D8 SPR1013
$2DC SPR1017
$2E0 SPR1019
$2E4 SPR1020
$2E8 SPR1021
$2EC SPR1022
$2F0 SPR1023
$2F4 IP
$2F8 MSR
$2FC CR
$300 FPSCR
$304 CPUIEN

31 24 23 16 15 8 7 0

5-98 Embedded Communications Computing Web Site

System Calls

5

GPR00 to GPR31 general purpose registers
FPR00 to FPR31 floating point registers
SR00 to SR15 segment registers
SPR0 to SPR1023 special purpose registers
IP instruction pointer
MSR machine state register
CR Condition register
FPSCR floating point status and control register
CPUIEN CPU interrupt enable

Refer to the microprocessor and CPU user manuals for a detailed
description for each of these registers.

Entry Conditions

R03 ==> MPU number (i.e., 0 - 1)
R04 ==> Address (word) Starting address of register set

Exit Conditions Different from Entry

R03 ==> $00000000 - fork was successful
$FFFFFFFF - processor is not idle
$FFFFFFFE - invalid instruction pointer
$FFFFFFFD - invalid processor number

System Call Routines

http://www.motorola.com/computer/literature 5-99

5

.IDLEMPU Function

Name

.IDLEMPU - Idle MPU (Multiple MPU Configuration)

Code

$0110

Description

.IDLEMPU is used to idle the processor executing this system call.

Entry Conditions

R03 ==> MPU number (i.e., 0-1)

Exit Conditions Different From Entry

R03==>0, idle successful
-1, processor already idle
-2, all other processors are idle
-3, invalid processor number

5-100 Embedded Communications Computing Web Site

System Calls

5

.IOINQ

Name

.IOINQ - Port Inquire

Code

$0120

Description

Writes the Port Control Structure at the user-specified address. The Port
Control Structure contains I/O Port Concurrent Mode and Port Control
information about the named port.

Entry Conditions

R0: Pointer to Port Control Structure as defined below. The Port Number,
Board Name Pointer, and I/O Control Structure Pointer members of the
Port Control Structure must be USER initialized before calling .IOINQ.

Exit Conditions Different From Entry

R03: Pointer to Port Control Structure, or R03: NULL (Port not recognized
error). The Port Control Structure will be modified as described above.

Port Control Structure

The Port Control Structure is of the form:

31 24 23 16 15 8 7 0

$00 Port Number

$04 Board Name Pointer

$08 Channel

$0C Device Address

$10 Concurrent Mode

$14 Modem ID

$18 I/O Control Structure Pointer

System Call Routines

http://www.motorola.com/computer/literature 5-101

5

Field descriptions:

$1C Error Code

$20 Reserved

$24 Reserved

$28 Reserved

Port Number The Port Number as used here is analogous to the port
number as required by the PF (Port Format) command.
Port Numbers are assigned as follows:

$FFFFFFFE

$FFFFFFFF

$0 - $1F

Concurrent Port

System Console

Other currently assigned port

Board Name
Pointer

A pointer to a null ($00) terminated ASCII string which is
the name of the target device. The maximum length of this
string is 20 bytes. The device name as used here is
analogous to the device name as required by the PF
command. The following devices are supported:

VKIO

PC16550

Z85C230

PC87303

Channel On multi-port devices, this value specifies which port of
the device is being referenced. Zero inclusive port
numbering is assumed, i.e., Port A is Channel Number 0.

Device
Address

Base address of the I/O Device

Concurrent ModeNonzero Value flags concurrent mode operation of this
port. Zero flags normal operation for this port.

Modem ID Modem identification code for the modem associated with
this port. The Modem ID code is ONLY valid if
Concurrent Mode Operation is true for this port. The
following modems are currently supported:

31 24 23 16 15 8 7 0

5-102 Embedded Communications Computing Web Site

System Calls

5

Modem ID Modem Type

1 Non-intelligent modem

2 Terminal - Refer to the Using the Service
Call section in Appendix B.

3 UDS 2662

4 UDS 2980

5 UDS 3382

6 MVME733EXT

7 MVME733F

I/O Control
Structure Pointer

A pointer to the port parameter/configuration table. See
I/O Control Structure on page 5-103.

Error Code Contains error code, if any. The following error codes are
defined:

1 PF Error; couldn’t format the Port with the user’s
parameters

2 Port Number not recognized - the PPCBug does not
have a definition for the given Port Number

3 Synchronization Error - can’t turn on Concurrent
Mode (Concurrent Mode already on)

4 PPCBug has no definition for the Port Number
specified

5 Port Number not in range of -2 to $1F

6 No info available on CM port because CM not
active

7 All legal Port Numbers are currently in use

8 All device driver Control Structures are currently in
use - can’t define any more Port Numbers.

9 Synchronization Error - cannot turn off CM. CM is
already off.

System Call Routines

http://www.motorola.com/computer/literature 5-103

5

I/O Control Structure

The I/O Control Structure is of the form:

Field descriptions:

10 Contradictory Request. CM port number specified
but user’s CM flag is clear and no PPCBug port is
currently operating in CM.

11 Illegal Port number for .IODELETE trap call

12 Alias for Error #11

13 .IODELETE is not allowed to delete this port
(PPCBug default port(s)).

14 Alias for Error #8

15 Alias for Error #7

16 Unknown modem type. Returned Port Number is
valid, but CM is NOT set.

Reserved These locations are set to zero on return to the caller.

31 24 23 16 15 8 7 0

$00 ctrlbits

$04 baud

$08 00 00 00 protocol

$0C 00 00 00 sync1

$10 00 00 00 sync2

$14 00 00 00 xonchar

$18 00 00 00 xoffchar

ctrlbits The bits of this 32-bit wide integer are defined as high true
flags with the following meanings:

Bit 00 odd parity

Bit 01 even parity

Bit 028 bit character word

Bit 037 bit character word

5-104 Embedded Communications Computing Web Site

System Calls

5

Note Only the asynchronous protocol is supported by PPCBug.

Bit 046 bit character word

Bit 055 bit character word

Bit 062 stop bits

Bit 071 stop bit

Bit 08 data terminal equipment

Bit 09 data computer equipment

Bit 10 cts control

Bit 11 rts control

Bit 12 xon/xoff control

Bit 13 hard copy flag

baud Baud rate value for this port

protocol A single ASCII character representing the desired
communications protocol. The following characters are
defined by the PPCBug.

A Async

M Mono

B Bisync

G Gen

S SDLC

H HDLC

sync1 8 bit value to be used as the sync1 character in the
synchronous communication protocols

sync2 8 bit value to be used as the sync2 character in the
synchronous communication protocols

xonchar Software flow (on) control character

xoffchar Software flow (off) control character

System Call Routines

http://www.motorola.com/computer/literature 5-105

5

.IOINFORM

Name

.IOINFORM - Port Inform

Code

$0124

Description

This trap will inform the PPCBug about change in I/O Port operation. The
PPCBug updates its internal I/O control structures and writes Error Code
and (possibly) Port Number in your Port Control Structure.

If you wish to inform the PPCBug that you are turning on Concurrent
Mode, you must set the Concurrent Mode field of the Port Control
Structure. It is permissible to use a Port number of -2 when turning on
Concurrent Mode. The PPCBug will return a valid Port Number for your
future reference.

If you wish to inform the PPCBug that you are turning off Concurrent
Mode operation, you must use a Port Number that has been returned by the
.IOINQ or .IOINFORM system calls.

Entry Conditions

R03: Pointer to the Port Control Structure.

All members of the Port Control Structure, except Error Code and
Reserved, as well as the Board Name String and I/O Control Structure
must be user initialized before calling .IOINFORM.

Exit Conditions Different From Entry

R03: Pointer to the Port Control Structure, or
R03: NULL (Port not recognized error).

The Port Control Structure will be modified as described above.

5-106 Embedded Communications Computing Web Site

System Calls

5

Port Control Structure

The Port Control Structure is of the form:

31 24 23 16 15 8 7 0

$00 Port Number

$04 Board Name Pointer

$08 Channel

$0C Device Address

$10 Concurrent Mode

$14 Modem ID

$18 I/O Control Structure Pointer

$1C Error Code

$20 Reserved

$24 Reserved

$28 Reserved

System Call Routines

http://www.motorola.com/computer/literature 5-107

5

.IOCONFIG

Name

.IOCONFIG - Port Configure

Code

$0128

Description

This trap will instruct the PPCBug to access the I/O device to change port
operation and to update its internal I/O Control structures. The PPCBug
writes ERROR CODE and (possibly) PORT NUMBER in your Port
Control Structure.

If you wish to inform the PPCBug that you are turning on Concurrent
Mode, you must set the Concurrent Mode field of the Port Control
Structure. It is permissible to use a Port number of -2 when turning on
Concurrent Mode. The PPCBug will return a valid Port Number for your
future reference.

If you wish to inform the PPCBug that you are turning off Concurrent
Mode operation, you must use a PORT NUMBER that has been returned
by the .IOINQ or .IOINFORM system calls.

Entry Conditions

R03: Pointer to Port Control Structure.

All members of the Port Control Structure, except Error Code and
Reserved, as well as the Board Name String and I/O Control Structure
must be user initialized before calling .IOCONFIG.

Exit Conditions Different From Entry

R03: Pointer to Port Control Structure as defined above, or
R03: NULL (Port not recognized error).

The Port Control Structure will be modified as described above.

5-108 Embedded Communications Computing Web Site

System Calls

5

.IODELETE

Name

.IODELETE - Port Delete

Code

$012C

Description

Causes the PPCBug to delete the named I/O port from its internal port list.
The routine of this call is analogous to the PPCBug NOPF command. Note
that .IODELETE cannot delete the Concurrent port. You must first use the
.IOINFORM trap and then you may delete the port.

Entry Conditions

R03: Pointer to Port Control Structure as defined above.

The Port Number member of the Port Control Structure must be USER
initialized before calling .IODELETE. The Board Name Pointer, Channel,
Device Address, Concurrent Flag, Modem ID, and, I/O Control Pointer
members of the Port Control Structure are not used by this trap.

Exit Conditions Different From Entry

R03: Pointer to Port Control Structure as defined above, or
R03: NULL (Port not recognized error).

The Port Control Structure Error Code field will be written with an error
code if any errors occurred.

Port Control Structure

The Port Control Structure is of the form:

System Call Routines

http://www.motorola.com/computer/literature 5-109

5

31 24 23 16 15 8 7 0

$00 Port Number

$04 Board Name Pointer

$08 Channel

$0C Device Address

$10 Concurrent Mode

$14 Modem ID

$18 I/O Control Structure Pointer

$1C Error Code

$20 Reserved

$24 Reserved

$28 Reserved

5-110 Embedded Communications Computing Web Site

System Calls

5

.SYMBOLTA

Name

.SYMBOLTA - Attach Symbol Table

Code

$0130

Description

This routine attaches a symbol table to the debugger. Once a symbol table
has been attached, all displays of physical addresses are first looked up in
the symbol table to see if the address is in range of any of the symbols
(symbol data). If the address is in range, it is displayed with the
corresponding symbol name and offset (if any) from the symbol base
address (symbol data). In addition to the display, any command line input
that supports an address as an argument can now take a symbol name for
the address argument. The address argument is first looked up in the
symbol table to see if it matches any of the addresses (symbol data) before
conversion takes place. This command is analogous to the debugger
command SYM. Refer to Chapter 3 for the command description.

The format of the symbol table is shown below:

31 24 23 16 15 8 7 0

$00 Number of Entries in Symbol Table

$04 Symbol Data #0

$08 Symbol Name #0

$20 Symbol Data #1

$24 Symbol Name #1

System Call Routines

http://www.motorola.com/computer/literature 5-111

5

Field descriptions:

Entry Conditions

R03: Address (word) Starting address of symbol table

Exit Conditions Different From Entry

R03: Bit 3 (ne) = 1; Bit 2 (eq) = 0 if errors (sanity check failed)
R03: Bit 3 (ne) = 0; Bit 2 (eq) = 1 if no errors

Number of Entries in
Symbol Table

The number of entries in table

Symbol Data 32-bit hexadecimal value.

The symbol data fields must be ascending in value
(sorted numerically). Upon execution of the system
call, the debugger performs a sanity check on the
symbol table with the above rules. The symbol table is
not attached if the check fails.

Symbol Name A string of printable characters; may be null ($00)
terminated

5-112 Embedded Communications Computing Web Site

System Calls

5

.SYMBOLTD

Name

.SYMBOLTD - Detach Symbol Table

Code

$0131

Description

This routine detaches a symbol table from the debugger. This command is
analogous to the debugger command NOSYM. Refer to Chapter 3 for the
command description.

Entry Conditions

None

Exit Conditions Different From Entry

None

A

A-1

ARelated Documentation

Motorola Computer Group Documents
The Motorola publications listed below are referenced in this manual. You
can obtain paper or electronic copies of Motorola Computer Group
publications by:

❏ Contacting your local Motorola sales office

❏ Visiting Motorola Computer Group’s World Wide Web literature
site, http://www.motorola.com/computer/literature

Table A-1. Motorola Computer Group Documents

Document Title
Publication

Number

MCP750 CompactPCI Single Board Computer Installation and Use* MCP750A/IH

MCP750 CompactPCI Single Board Computer Programmer’s Reference Guide MCP750A/PG

MCPN750 CompactPCI Single Board Computer Installation and Use MCPN750A/IH

MCP750 CompactPCI Single Board Computer Programmer’s Reference Guide MCPN750A/PG

MVME2100 Series Single Board Computer Installation and Use V2100A/IH

MVME2100 Series Single Board Computer Programmer’s Reference Guide V2100A/PG

MVME2400 Series VME Processor Module Installation and Use V2400A/IH

MVME2400 Series VME Processor Module Programmer’s Reference Guide V2400A/PG

MVME2600 Series Single Board Computer Installation and Use V2600A/IH

MVME2600 Series Single Board Computer Programmer’s Reference Guide V2600A/PG

MVME2700 Series VME Processor Module Installation and Use V2700A/IH

MVME2700 Series VME Processor Module Programmer’s Reference Guide V2700A/PG

MVME3600 Series Single Board Computer Installation and Use V3600A/IH

MVME4600 Series VME Processor Module Installation and Use V4600A/IH

A-2 Embedded Communications Computing Web Site

Related Documentation
A

MVME3600/4600 Series VME Processor Modules Programmer’s Reference Guide V3600A/PG

MVME2300 VME Processor Modules Installation and Use V2300A/IH

MVME2300 VME Processor Modules Programmer’s Reference Guide V2300A/PG

MVME2400 VME Processor Modules Installation and Use V2400A/IH

MVME2300 VME Processor Modules Programmer’s Reference Guide V2400A/PG

MTX Embedded ATX Motherboard Installation and Use MTXA/IH

MTX Embedded ATX Motherboard Programmer’s Reference Guide MTXA/PG

PMCSpan PMC Adapter Carrier Module Installation and Use PMCSPANA/IH

PPCBug Diagnostics Manual PPCDIAA/UM

TMCP700 Transition Module Installation and Use TMCP700A/IH

TMCPN710 Transition Module Installation and Use TMCPN710A/IH

MVME712M Transition Module and P2 Adapter Board Installation and Use VME712MA/IH

MVME761 Transition Module Installation and Use VME761A/IH

Table A-1. Motorola Computer Group Documents (Continued)

Document Title
Publication

Number

Microprocessor and Controller Documents

http://www.motorola.com/computer/literature A-3

A

Microprocessor and Controller Documents
For additional information, refer to the following table for manufacturers’
data sheets or user’s manuals. As an additional help, a source for the listed
document is also provided. Please note that in many cases, the information
is preliminary and the revision levels of the documents are subject to
change without notice. .

Table A-2. Microprocessor and Controller Documents

Document Title and Source
Publication

Number

PowerPC 603TM RISC Microprocessor Technical Summary

Literature Distribution Center for Motorola
Telephone: (800) 441-2447

 FAX: (602) 994-6430 or (303) 675-2150
 E-mail: ldcformotorola@hibbertco.com

MPC603/D

PowerPC 603TM RISC Microprocessor User’s Manual

Literature Distribution Center for Motorola
Telephone: (800) 441-2447

 FAX: (602) 994-6430 or (303) 675-2150
 E-mail: ldcformotorola@hibbertco.com

OR

IBM Microelectronics
Mail Stop A25/862-1
PowerPC Marketing
1000 River Street
Essex Junction, Vermont 05452-4299
Telephone: 1-800-PowerPC

 Telephone: 1-800-769-3772
FAX: 1-800-POWERfax
FAX: 1-800-769-3732

MPC603UM/AD

MPR603UMU-01

MPC750TM RISC Microprocessor User’s Manual

Motorola Literature Distribution Center
Telephone: (800) 441-2447 or (303) 675-2140

 FAX: (303) 675-2150
 E-mail: ldcformotorola@hibbertco.com

INTERNET: http://motorola.com/sps

INTERNET: http://www.mot.com/PowerPC

MPC750UM/AD

A-4 Embedded Communications Computing Web Site

Related Documentation
A

PowerPC 604TM RISC Microprocessor User’s Manual

Literature Distribution Center for Motorola
Telephone: (800) 441-2447

 FAX: (602) 994-6430 or (303) 675-2150
 E-mail: ldcformotorola@hibbertco.com

OR

IBM Microelectronics
Mail Stop A25/862-1
PowerPC Marketing
1000 River Street
Essex Junction, Vermont 05452-4299
Telephone: 1-800-PowerPC

 Telephone: 1-800-769-3772
FAX: 1-800-POWERfax
FAX: 1-800-769-3732

MPC604UM/AD

MPR604UMU-01

PowerPCTM Microprocessor Family: The Programming Environments

Motorola Literature Distribution Center
Telephone: (800) 441-2447

 FAX: (602) 994-6430 or (303) 675-2150
 E-mail: ldcformotorola@hibbertco.com

OR

IBM Microelectronics
Mail Stop A25/862-1
PowerPC Marketing
1000 River Street
Essex Junction, Vermont 05452-4299
Telephone: 1-800-PowerPC

 Telephone: 1-800-769-3772
FAX: 1-800-POWERfax
FAX: 1-800-769-3732

MPCFPE/AD

MPRPPCFPE-01

MPC2604GA Integrated Secondary Cache for PowerPC Microprocessors
Data Sheets

Literature Distribution Center for Motorola
Telephone: (800) 441-2447

 FAX: (602) 994-6430 or (303) 675-2150
 E-mail: ldcformotorola@hibbertco.com

MPC2604GA

Table A-2. Microprocessor and Controller Documents (Continued)

Document Title and Source
Publication

Number

Microprocessor and Controller Documents

http://www.motorola.com/computer/literature A-5

A

AlpineTM VGA Family - CL-GD543X/’4X Technical Reference Manual
Fourth Edition

Cirrus Logic, Inc. (or nearest Sales Office)
 3100 West Warren Avenue
Fremont, California 94538-6423
Telephone: (510) 623-8300
FAX: (510) 226-2180

385439

DECchip 21040 Ethernet LAN Controller for PCI
Hardware Reference Manual

Digital Equipment Corporation
Maynard, Massachusetts
DECchip Information Line
Telephone (United States and Canada): 1-800-332-2717
TTY (United States only): 1-800-332-2515
Telephone (outside North America): +1-508-568-6868

EC-N0752-72

DECchip 21140 PCI Fast Ethernet LAN Controller
Hardware Reference Manual

Digital Equipment Corporation
Maynard, Massachusetts
DECchip Information Line
Telephone (United States and Canada): 1-800-332-2717
TTY (United States only): 1-800-332-2515
Telephone (outside North America): +1-508-568-6868

EC-QC0CA-TE

PC87303VUL (Super I/OTM Sidewinder Lite) Floppy Disk Controller,
Keyboard Controller, Real-Time Clock, Dual UARTs, IEEE 1284 Parallel
Port, and IDE Interface

National Semiconductor Corporation
Customer Support Center (or nearest Sales Office)
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, California 95052-8090
Telephone: 1-800-272-9959

PC87303VUL

Table A-2. Microprocessor and Controller Documents (Continued)

Document Title and Source
Publication

Number

A-6 Embedded Communications Computing Web Site

Related Documentation
A

PC87307VUL (Super I/OTM Enhanced Sidewinder Lite) Floppy Disk
Controller,, Keyboard Controller, Real-Time Clock, Dual UARTs,
IEEE 1284 Parallel Port, and IDE Interface

National Semiconductor Corporation
Customer Support Center (or nearest Sales Office)
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, California 95052-8090
Telephone: 1-800-272-9959

PC87307VUL

PC87308VUL (Super I/OTM Enhanced Sidewinder Lite) Floppy Disk
Controller, Keyboard Controller, Real-Time Clock, Dual UARTs,
IEEE 1284 Parallel Port, and IDE Interface

National Semiconductor Corporation
Customer Support Center (or nearest Sales Office)
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, California 95052-8090
Telephone: 1-800-272-9959

PC87308VUL

PC16550 UART

National Semiconductor Corporation
Customer Support Center (or nearest Sales Office)
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, California 95052-8090
Telephone: 1-800-272-9959

PC16550DV

MK48T559 Address/Data Multiplexer 8K x 8 TIMEKEEPERTM SRAM Data
Sheet

SGS-Thomson Microelectronics Group
Faxback (Document-on-Demand) system
Carrollton, TX
Telephone: (972) 4667-7788

M48T559

Table A-2. Microprocessor and Controller Documents (Continued)

Document Title and Source
Publication

Number

Microprocessor and Controller Documents

http://www.motorola.com/computer/literature A-7

A

SYM 53CXX (was NCR 53C8XX) Family PCI-SCSI I/O Processors
Programming Guide

Symbios Logic Inc.
1731 Technology Drive, suite 600
San Jose, CA95110
Telephone: (408) 441-1080
Hotline: 1-800-334-5454

T72961II

SCC (Serial Communications Controller) User’s Manual
(for Z85230 and other Zilog parts)

Zilog, Inc.
 210 East Hacienda Ave., mail stop C1-0

Campbell, California 95008-6600
Telephone: (408) 370-8016
FAX: (408) 370-8056

DC-8293-02

AMD-645™ Peripheral Bus Controller Data Sheet
Advanced Micro Devices, Inc.

or

VT82C586B PIPC

PCI Integrated Peripheral Controller

PC97 Compliant PCI-to-ISA Bridge with ACPI,

Distributed DMA, Plug and Play, Master Mode

PCI-IDE Controller with Ultra DMA-33

USB Controller, Keyboard Controller, and RTC

VIA Technologies, Inc.

5020 Brandin Court

Fremont, CA 94538

Telephone: (510) 683-3300

FAX: (510) 683-3301

21095A/O

VT82C586B

Digital Semiconductor 21154

PCI-to-PCI Bridge Data Sheet

Digital Equipment Corporation

Maynard, MA

Telephone (United States and Canada): 1-800-332-2717

Telephone (Outside North America): +1-508-628-4760

EC-R24JA-TE

Table A-2. Microprocessor and Controller Documents (Continued)

Document Title and Source
Publication

Number

A-8 Embedded Communications Computing Web Site

Related Documentation
A

Z8536 CIO Counter/Timer and Parallel I/O Unit
Product Specification and User’s Manual
(in Z8000® Family of Products Data Book)

Zilog, Inc.
 210 East Hacienda Ave., mail stop C1-0

Campbell, California 95008-6600
Telephone: (408) 370-8016
FAX: (408) 370-8056

DC-8319-00

W83C553 Enhanced System I/O Controller with PCI Arbiter (PIB)

Winbond Electronics Corporation
Winbond Systems Laboratory
2730 Orchard Parkway
San Jose, CA 95134
Telephone: 1-408-943-6666
FAX: 1-408-943-6668

W83C553

Universe User Manual

Tundra Semiconductor Corporation
603 March Road
Kanata, ON K2K 2M5, Canada
Telephone: 1-800-267-7231
Telephone: (613) 592-1320

OR

695 High Glen Drive
San Jose, California 95133, USA
Telephone: (408) 258-3600
FAX: (408) 258-3659

Universe
(Part Number
9000000.MD303.01)

Table A-2. Microprocessor and Controller Documents (Continued)

Document Title and Source
Publication

Number

Related Specifications

http://www.motorola.com/computer/literature A-9

A

Related Specifications
For additional information, refer to the following table for related
specifications. As an additional help, a source for the listed document is
also provided. Please note that in many cases, the information is
preliminary and the revision levels of the documents are subject to change
without notice.

Table A-3. Related Specifications

Document Title and Source
Publication

Number

ANSI Small Computer System Interface-2 (SCSI-2), Draft Document

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112-5704
Telephone: 1-800-854-7179
Telephone: (303) 792-2181

X3.131.1990

Compact PCI Specification

PCI Industrial Manufacturers Group (PICMG)

401 Edgewater Pl, Suite 500

Wakefield, MA 01880

Telephone: 781-246-9318

Fax: 781-224-1239

CPCI Rev. 2.1

Dated 9/2/97

A-10 Embedded Communications Computing Web Site

Related Documentation
A

VME64 Specification

VITA (VMEbus International Trade Association)
 7825 E. Gelding Drive, Suite 104
 Scottsdale, Arizona 85260-3415
 Telephone: (602) 951-8866
 FAX: (602) 951-0720

NOTE: An earlier version of this specification is available as:

Versatile Backplane Bus: VMEbus

Institute of Electrical and Electronics Engineers, Inc.
Publication and Sales Department
345 East 47th Street
New York, New York 10017-21633

Telephone: 1-800-678-4333

OR

Microprocessor system bus for 1 to 4 byte data

Bureau Central de la Commission Electrotechnique Internationale
3, rue de Varembé
Geneva, Switzerland

ANSI/VITA 1-1994

ANSI/IEEE
 Standard 1014-1987

IEC 821 BUS

IEEE - Common Mezzanine Card Specification (CMC)

Institute of Electrical and Electronics Engineers, Inc.
Publication and Sales Department
345 East 47th Street
New York, New York 10017-21633
Telephone: 1-800-678-4333

P1386 Draft 2.0

IEEE - PCI Mezzanine Card Specification (PMC)

Institute of Electrical and Electronics Engineers, Inc.
Publication and Sales Department
345 East 47th Street
New York, New York 10017-21633
Telephone: 1-800-678-4333

P1386.1 Draft 2.0

Table A-3. Related Specifications (Continued)

Document Title and Source
Publication

Number

Related Specifications

http://www.motorola.com/computer/literature A-11

A

Bidirectional Parallel Port Interface Specification

Institute of Electrical and Electronics Engineers, Inc.
Publication and Sales Department
345 East 47th Street
New York, New York 10017-21633
Telephone: 1-800-678-4333

IEEE Standard 1284

Peripheral Component Interconnect (PCI) Local Bus Specification,
Revision 2.1

PCI Special Interest Group
2575 NE Kathryn St. #17
Hillsboro, OR 97124
Telephone: (800) 433-5177 (inside the U.S.)

 or (503) 693-6232 (outside the U.S.)
FAX: (503) 693-8344

PCI Local Bus
Specification

PowerPC Reference Platform (PRP) Specification,
Third Edition, Version 1.0, Volumes I and II

International Business Machines Corporation
Power Personal Systems Architecture
11400 Burnet Rd.
Austin, TX 78758-3493
Document/Specification Ordering
Telephone: 1-800-PowerPC
Telephone: 1-800-769-3772
Telephone: 708-296-9332

MPR-PPC-RPU-02

ATX Specification
 Version 2.01
 created by Intel Corporation
 available on the World Wide Web through Teleport Internet Services
 at URL http://www.teleport.com/~atx/index.htm

IEEE Standard for Local Area Networks: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications

Institute of Electrical and Electronics Engineers, Inc.
Publication and Sales Department
345 East 47th Street
New York, New York 10017-21633
Telephone: 1-800-678-4333

IEEE 802.3

Table A-3. Related Specifications (Continued)

Document Title and Source
Publication

Number

A-12 Embedded Communications Computing Web Site

Related Documentation
A

Information Technology - Local and Metropolitan Networks - Part 3:
Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer Specifications

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112-5704
Telephone: 1-800-854-7179
Telephone: (303) 792-2181

(This document can also be obtained through the national standards body of
member countries.)

ISO/IEC 8802-3

Interface Between Data Terminal Equipment and Data Circuit-Terminating
Equipment Employing Serial Binary Data Interchange (EIA-232-D)

Electronic Industries Association
Engineering Department
2001 Eye Street, N.W.
Washington, D.C. 20006

ANSI/EIA-232-D
Standard

Table A-3. Related Specifications (Continued)

Document Title and Source
Publication

Number

B

B-1

BSystem Menu

Introduction
Enter the MENU command at either the PPCx-Bug> or PPCx-Diag>
prompt to display the System Menu, which is shown below.

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape

Menu Items

Continue System Start-up

Enter 1 to continue the system start-up and boot sequence. The system self-
tests, followed by the boot routine, either NVRAM Boot List Boot, Auto
Boot, ROMboot, or Network Auto Boot. The boot routine, and the boot
device, are selectable in the ENV command. Refer to Chapter 3 for
information on setting the ENV command parameters.

If the self-test fails to complete correctly, it may display an error message.
Refer to Appendix C for explanations of these error messages. Refer to the
PPCBug Diagnostics Manual for explanations of some of the self-tests and
test error messages.

Select Alternate Boot Device

Enter 2 to receive the following prompts for entering an alternate boot
device:

B-2 Embedded Communications Computing Web Site

System Menu

B
*Enter Alternate Boot Device:
Controller:
Drive :
File :".

The devices supported by the PPCBug are listed in Appendix E. After
entry of a selected device and a carriage return, the menu is redisplayed for
another selection (normally Continue System Start Up).

Go to System Diagnostics

Enter 3 to go to the PPCBug diagnostics directory. You may return to the
System Menu by entering the MENU command at the PPCx-Diag>
prompt.

Initiate Service Call

Enter 4 to initiate a service call.

This function is normally used to complete a connection to a service center
which can then use the concurrent mode (the concurrent operation of a
modem connected terminal and the system console) to assist a customer
with a problem.

Refer to Using the Service Call Function on page B-5 for details on this
menu item.

Display System Test Errors

Enter 5 to display any errors accumulated by the extended confidence test
suite when last run. This can be a useful field service tool.

Dump Memory to Tape

Enter 6 to save an image of memory on to tape for later analysis. The
output of tape dump is two or more files on the user-specified controller
and device. The first file (File 0) contains information about the Tape
Dump Utility that created the tape, certain hardware specific information,
and, an array of Tape Dump File Map Entries.

Menu Items

http://www.motorola.com/computer/literature B-3

BOther files (files 1 through n) written by the Tape Dump Utility are simply
image(s) of memory at the time the Tape Dump Utility was invoked.

This implementation of the Tape Dump Utility allows you to define
multiple blocks of memory, each block written as a separate file on the
tape. The Tape Dump File Map Entries in File 0 describe the address
ranges of system memory that each tape file contains.

The File Zero Structure is of the form:

struct fil0 {
 char magic[4]; /* magic number */
 char who_do[4]; /* who made dump (Bug or OS) */
 int file0sz; /* File zero size */
 int complete; /* tape dump completed flag */
 int Trev; /* Revision of this structure */
 struct brdid bd_info; /* Board Identification Packet */
 struct tddir tdir[MAXFILES]; /* Tape Dump File Map Entries */
};

The Board Identification/Information structure (brdid) is identical to the
Board ID packet returned by the System Call .BRD_ID.

The constant FZS_REV is the File Zero Structure revision in Binary
Coded Decimal (BCD) representation. FZS_REV is defined as $110 (that
is, rev. 1.10). Member Trev is set to FZS_REV.

The constant MAXFILES determines the maximum number of Tape
Dump File Map Entries in the File 0 Structure Template and, congruently,
the maximum number of memory blocks that can define and dump.
MAXFILES is defined as 20.

The Tape Dump File Map Entry structure is of the form:

struct tddir {
 unsigned int fileno; /* file number */
 unsigned int saddr; /* memory starting address */
 unsigned int eaddr; /* memory ending address */
};

The first member of the Tape Dump File Map Entry structure is File
Number (fileno). The normal range of values for fileno is from 1 to
MAXFILES. The value $FFFFFFFF in fileno flags an invalid and unused
File Map Entry.

B-4 Embedded Communications Computing Web Site

System Menu

B Tape Dump Example:

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
Enter Menu #: 6<Return>

Do you wish to dump memory (N/Y)? <Return>
Controller LUN = 04, Device LUN = 00.
Change DLUN and/or CLUN (Y/N)? <Return>
Define memory blocks to be dumped.
File Number:1
Starting Address = 00000000? <Return>
Ending Address + 1 = 01000000? 10000<Return>
Define another memory block (Y/N)? Y<Return>
File Number:2
Starting Address = 80000 <Return>
Ending Address + 1 = 100000 <Return>
Define another memory block (Y/N)? <Return>

The following memory blocks have been defined:
File: 1 Start: 00000000 End: 00010000
File: 2 Start: 00080000 End: 00100000

Insert tape..Do you want to continue (N/Y)? <Return>
Rewind command executing

Erase Tape (Y/N)? <Return>

Retension Tape (Y/N)? <Return>
Writing file # 0
Writing file # 1
Writing file # 2

Dump finished. You may remove tape.

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
Enter Menu #:

Using the Service Call Function

http://www.motorola.com/computer/literature B-5

BUsing the Service Call Function

Operation

The service call function displays a series of interactive prompts. Any
question requiring a Y or N answer defaults to N if only Return is entered.

First, the system asks the modem type:

Modem Type:
 0) Terminal - - 9600
 1) Manual - - 1200
 2) Internal - UDS-2122662 1200
 3) Internal MVME712A/AM UDS-V.22b 2400
 4) Internal MVME714M UDS-V.22b 2400
 5) External MVME733EXT UDS-V.32/V.42b,FasTalk 9600
 6) Internal MVME733F UDS-V.32/V.42b 9600
Your Selection (2)? 0

Select 0 (Terminal) to connect any ASCII terminal in place of a modem via
a null modem or equivalent cable. This is useful in certain trouble-shooting
applications for providing a slave terminal without the necessity of dialing
through a modem. Refer to Terminal Connection on page B-10.

Select 1 (Manual) connects directly to the modem in an ASCII terminal
mode, allowing any nonstandard protocol modem to be used. Refer to
Manual Connection on page B-9.

”UDS” signifies an internal modem that is compatible with the UDS
modem protocol.

When an option is selected, the system asks:

Do you want to change the baud rate from 1200 (Y/N)?

If you answer Y (the default is N), the system prompts:

Baud rate [300, 1200, 2400, 4800, 9600] 1200?

Enter a baud rate from the and press Return. If you do not enter a value, the
baud rate remains as previously set.

The system then asks:

Is the modem already connected to customer service (Y/N)?

B-6 Embedded Communications Computing Web Site

System Menu

B When a connection has been made to a customer service center (or any
other remote device), hang up does not automatically occur; it is an
operation that you initiate. If a system reset has occurred, for instance, a
hang up does not take place, and connection to customer service is still in
effect. In this case, it is not necessary or desirable to attempt to reconnect
on a connection that is already in effect.

When an answer is entered, the system responds:

Enter System ID Number:

This number is typically assigned to your system by customer service. The
customer service computer may do a check to assure the validity of this
number for login purposes.

The system responds with:

Wait for an incoming Call or Dial Out (W/D)?

Enter W to wait for the other computer to dial in to complete the
connection. Enter D for dialing out yourself. If D is selected, the system
asks:

UDS Modem:

(T) = Tone Dialing (Default), (P) = Pulse Dialing
(=) = Pause and Search for a Dial Tone
(,) = Wait 2 Seconds

The system then asks:

Enter phone number:

Enter the number, including area code if required. Do not use any
separators except for a comma (,) or equal sign (=) if required to search for
a dial tone (depending on which modem protocol was selected), such as
when dialing out of a location having an internal switchboard.
Additionally, preface the number with one of the dialing selections. The
dialing selection can also be changed within the number being dialed if
necessary if an internal dialing system takes a different dialing mode than
the external world switched network. When connection has been made, the
system reports:

Service Call in progress - Connected

Using the Service Call Function

http://www.motorola.com/computer/literature B-7

BThe remote system can now send either the MESS (Message Control) to
send a message, or the RCC (Request for Concurrent Console) to enter the
concurrent mode.

Sending Messages

Use the MESS command to send a message from the customer service
center to the console of the calling system. The message is a string of data
no more than 80 bytes in length terminated with a carriage return. The
ROM code moves the string to the console followed by a carriage return
and a line feed.

This command can be used to send messages to the operator (such as
“Please stand by”) to give an indication of activity while various processes
are taking place at the customer service center. Many of these message
commands may be sent while in the command mode.

Concurrent Mode

In concurrent mode, all input from either the port, the console, or the
remote, is taken simultaneously. All output is sent to both ports
concurrently. Use the RCC command to request concurrent console. A
prompt is displayed. If the operator enters Y, a single character y is sent to
the customer service system, followed by the console menu as displayed
on the operators console. If the operator enters N, the single character f is
sent to the customer service system and the call is terminated.

Either the console or the remote console may terminate the concurrent
mode at any time by typing CTRL-a. The phone line is hung up by the
PPC ROM code and a message is displayed indicating the end of the
concurrent mode.

The most likely command sequence at this point is a message command to
indicate connection to the remote system, followed by a request for
concurrent mode operation. When these are received, the user system asks:

Concurrent mode (Y/N)?

Enter Y to enter concurrent mode. The system then presents the
information:

Select Menu Item #8 to exit Concurrent Mode

B-8 Embedded Communications Computing Web Site

System Menu

B The menu is redisplayed and concurrent mode is in effect. Any normal
system operation can now be initiated at either the local or remote
connected terminal, including system reboot.

1) Continue System Start Up
2) Select Alternate Boot Device
3) Go to System Debugger
4) Initiate Service Call
5) Display System Test Errors
6) Dump Memory to Tape
7) Start Conversation Mode
8) Exit Concurrent Mode

Two new entries, Start Conversation Mode and Exit
Concurrent Mode, appear in the menu during concurrent mode.

Conversation mode allows either party to initiate a direct conversation
mode between the remote system terminal and the local terminal.

The conversation mode can be selected and used at any time, though the
prompt line is not displayed in normal operation.

Terminating the Conversation and Concurrent Modes

To exit the conversation mode, but remain in concurrent mode, press
Return, type a period (.) and press Return again.

To exit the conversation mode as well as to terminate the concurrent mode
and hang up the modem, type Ctrl-a.

The system then redisplays the selection menu for further operator action.

You may terminate the concurrent connection by selecting menu item 4
(Initiate Service Call) while a call is underway. The system asks:

Do you wish to disconnect the remote link (Y/N)?

If you answer N, the system gives the option of returning to (or entering)
the conversation mode:

Do you wish the conversation mode (Y/N)?

Enter Y to return to conversation mode. Enter N to redisplay the menu.

Using the Service Call Function

http://www.motorola.com/computer/literature B-9

BThe system responds with the following series of messages if the
disconnect option is chosen:

Wait for concurrent mode to terminate

Hanging up the Modem

Concurrent Mode Terminated

The last message is followed by the system menu without the Start
Conversation Mode and Exit Concurrent Mode selections.

Manual Connection

Enter Manual mode by selecting Manual as the modem type.

A manual modem connection allows use of modems that have a defined
ASCII command set but do not adhere to any of the standard protocols
supported.

When manual modem control is attempted, the user terminal is in effect
connected directly to the modem for control purposes. This is called
transparent mode. When in transparent mode, you must take responsibility
for modem control, and for informing the system of when connection has
taken place.

If manual mode selection is made in response to the Is the modem
already connected prompt, the following dialog takes place:

Manual mode displays all prompts as in system mode, through the Enter
System ID Number. After the ID number has been entered, the system
prompts:

Manually call CSO and when you are Connected,
exit the Transparent Mode

Escape character: $01=^A

Enter the dial command for the modem (such as atdt). Enter Ctrl-a when
connection is made or if for any reason a connection cannot be made.
Because the system has no knowledge of the status of the system when
transparent mode is exited, it asks:

Did you make the connection (Y/N)?

B-10 Embedded Communications Computing Web Site

System Menu

B If you answer Y to the question, the system then continues with a normal
dialog with the remote system, which would be for the remote system to
send the banner message followed by a request for concurrent mode
operation (the concurrent operation of a modem connected terminal and
the system console). If N is the response, the system asks:

Terminate CSO conversation (Y/N)?

Enter Y to re-enter transparent mode and prompt:

Manually hang up the modem and when you are done,
exit the transparent mode
Escape character: $01 = ^A

The system is now in normal operation, and the menu is redisplayed.

Terminal Connection

Enter Terminal mode by selecting Terminal as the modem type.

Operation with the terminal mode is similar to system mode, except that
after the Baud rate prompt, the system automatically enters concurrent
mode. Additionally, exiting concurrent mode does not give prompts and
messages referring to the hang up sequence. All other system operation is
the same as other modes of connection.

C

C-1

CPPCBug Messages

Introduction
This section lists the PPCBug messages.

Refer to the PPCBug Diagnostics User’s Manual for error messages
displayed while running various diagnostics commands.

C-2 Embedded Communications Computing Web Site

PPCBug Messages

C

Error Messages
Table C-1. Debugger Error Messages

Debugger Error Message Meaning

Bad VID Block String ‘MOTOROLA’ is not found while
booting, and boot sequence aborts

Concurrent Mode Already Active System is already active in concurrent
mode in CM command

Concurrent Mode Not Active Error message when trying to deactivate
an inactive system in NOCM command

Concurrent Mode Setup Failure Error in establishing communications with
port/device in CM command)

Concurrent Mode Terminated With
Failure

Error closing communications link in
NOCM command

Error Status: xxx Disk communication error status word
when IOP command, or .DSKRD or
.DSKWR system call, are unsuccessful.
xxx is the error code. Refer to Appendix F
for details.

*** Illegal argument *** Improper argument in known command

*** Illegal Option *** Improper option in MM command

Invalid command Unknown command

*** Invalid LUN *** Invalid controller and device selected in
IOP or IOT commands

*** Invalid Range *** Invalid range entered in BC, BF, BI, BM,
BS, or DU commands

*** Missing Argument *** Necessary argument was not entered

NON-EXISTENT MNEMONIC Entry error in MM command with DI
option

NON-EXISTENT OPERAND Entry error in MM command with DI
option

part of S-record data Non-hex character is encountered in data
field in LO or VE commands

RAM FAIL AT $nnnnnnnn Parity is not correct at address $nnnnnnnn
during a BI command

Other Messages

http://www.motorola.com/computer/literature C-3

C

Other Messages

STRING POOL FULL, LAST LINE DISCARDED String pool size (511 characters) is
exceeded during MA command

The following record(s) did not verify

S ZZ CS

Match not found in the LO or VE
commands. ZZ is the non-matching byte
and CS is the non-matching checksum.

Verify passes Successful VE command

Table C-2. Other Messages

Message Meaning

PPC1-Bug> Debugger prompt

PPC1-Diag> Diagnostic prompt

At Breakpoint Program has stopped at breakpoint

Autoboot in progress... To Abort hit
<BREAK>

Autoboot has begun

--Break Detected-- BREAK key on console has stopped
operation

COLD Start Vectors have been initialized

Concurrent Mode Active The specified port echoes the system
console terminal after CM command

Data = $nn nn is truncated data cut to fit data field
size during BF or BV commands

Effective address: nnnnnnnn Data location (BC, BF, BI, BM, BS, BV,
and DU commands); Location of program
execution (GD, GN, GO, and GT
commands)

Effective count: &nnn Number of data patterns acted on during
BC, BF, BI, BS, or BV commands; or the
number of bytes moved during DU
command

Enter Menu #: Enter a System Menu option.

Table C-1. Debugger Error Messages (Continued)

Debugger Error Message Meaning

C-4 Embedded Communications Computing Web Site

PPCBug Messages

C Escape character: $HH=AA Exit code from transparent mode, in hex
(HH) and ASCII (AA) during TM
command

Initial data = $XX, increment = $YY Data was truncated to fit the field length
selected in the BF or BV commands. XX is
starting data and YY is truncated
increment.

-last match extends over range boundary- String found in BS command ends outside
specified range

Logical unit $XX unassigned Port number referenced in PA or PF
command is unassigned. $XX is the port
LUN.

M= Prompt for macro definitions during MA
command

NO MACROS DEFINED No macros have been defined (when using
MA command to list available macros)

No printer attached No printer was attached prior to running
the NOPA command

-not found- String not found in BS command

OK to proceed (y/n)? Interlock prompt before writing macros in
the MAW command or before
configuring port in PF command.

Press “RETURN” to continue More lines of output are available in the
BS and HE commands

WARM Start Vectors have not been initialized

Table C-2. Other Messages (Continued)

Message Meaning

D

D-1

DS-Record Format

Introduction
The S-record format for output modules was devised for the purpose of
encoding programs or data files in a printable format for transfer between
computer systems. The transfer process can thus be visually monitored and
the S-records can be edited more easily.

S-Record Content
When viewed by the user, S-records are essentially character strings made
of five fields: the record type, record length, memory address, code/data,
and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first character representing the high-order 4 bits,
and the second the low-order 4 bits of the byte.

The contents of the S-record field are:

Table D-1. S-Record Fields

Field Printable
Character

s

Contents

Type 2 S-record type, such as S0 or S1

Record
Length

2 The count of the character pairs in the record, excluding the type
and record length

Address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data field is to be loaded
into memory

Code/Data 0-n From 0 to n bytes of executable code, memory-loadable data, or
descriptive information. For compatibility with teletypewriters,
some programs may limit the number of bytes to as few as 28 (56
printable characters in the S-record).

D-2 Embedded Communications Computing Web Site

S-Record Format

D

Each record may be terminated with a carriage return, line feed, or null.
Additionally, an s-record may have an initial field to accommodate other
data such as line numbers generated by some time-sharing system.

Accuracy of transmission is ensured by the record length (byte count) and
checksum fields.

S-Record Types
Eight types of S-records have been defined to accommodate the several
needs of the encoding, transportation, and decoding functions. The various
Motorola upload, download, and other record transportation control
programs, as well as cross-assemblers, linkers, and other file-creating or
debugging programs, utilize only those S-records which serve the purpose
of the program. For specific information on which S-records are supported
by a particular program, the user’s manual for that program must be
consulted.

An S-record-format module may contain S-records of the following types:

Checksum 2 The least significant byte of the one’s complement of the sum of the
values represented by the pairs of characters making up the record
length, address, and the code/data fields

S0 The header record for each block of S-records. The code/data field
may contain any descriptive information identifying the following
block of S-records. Under the operating system, a resident linker
command can be used to designate module name, version number,
revision number, and description information which will make up the
header record. The address field is normally zeroes.

S1 A record containing code/data and the 2-byte (16-bit) address at
which the code/data is to reside

Table D-1. S-Record Fields (Continued)

Field Printable
Character

s

Contents

Creating S-Records

http://www.motorola.com/computer/literature D-3

D

Note The upper bytes are assumed to be zero in addresses that are
smaller than 4 bytes (32 bits).

Only one termination record is used for each block of S-records. S7 and S8
records are usually used only when control is to be passed to a 3- or 4-byte
address. Normally, only one header record is used, although it is possible
for multiple header records to occur.

Creating S-Records
S-record-format programs may be created with the DU command. You
may also use dump utilities, debuggers, the operating system resident
linkage editor, or several cross-assemblers or cross-linkers. On the

S2 A record containing code/data and the 3-byte (24-bit) address at
which the code/data is to reside

S3 A record containing code/data and the 4-byte (32-bit) address at
which the code/data is to reside

S5 A record containing the number of S1, S2, and S3 records transmitted
in a particular block. This count appears in the address field. There is
no code/data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of S1 records. The address field may
optionally contain the 2-byte address of the instruction to which
control is to be passed. Under the operating system, a resident linker
command can be used to specify this address. If not specified, the first
entry point specification encountered in the object module input will
be used. There is no code/data field.

D-4 Embedded Communications Computing Web Site

S-Record Format

D

operating system, a build utility allows an executable load module to be
built from S-records, and has a counterpart utility which allows an S-
record file to be created from a load module.

Several programs are available for downloading a file in S-record format
from a host system to an 8-bit, 16-bit, or 32-bit microprocessor-based
system.

Example
A typical S-record-format module, as printed or displayed, is shown
below:

S00A00006765745F7274630D
S2240400007C8402A6908300007C8502A6908300044E800020000000000065040000006504002442
S20C0400200000000000000000CF
S804040000F7

The module consists of one S0 record, two S3 records, and one S8 record.

The S0 record is explained as follows:

The first S2 record is explained as follows:

S0 S-record type S0, indicating that it is a header record for
this block of S-records

0A Hexadecimal 0A (decimal 10), indicating that 10
character pairs (or ASCII bytes) follow

0000 Four-character 2-byte address field; hexadecimal
address 0000 (the address field is not used by the
debugger, the debugger ignores this record)

6765745F727463 Module name in ASCII, get_rtc

0D The checksum of this header record

S2 S-record type S2, indicating that it is a code/data record
to be loaded/verified at a 3-byte address

24 Hexadecimal 24 (decimal 36), indicating that 36
character pairs, representing 36 bytes of binary data,
follow

Example

http://www.motorola.com/computer/literature D-5

D

The second S2 record is explained as follows:

040000 Six-character 3-byte address field; hexadecimal address
00040000, where the code/data which follows is to be
loaded

7C8402...040024 The next 32 character pairs of the first S2 record are the
ASCII bytes of the actual program code/data. In this
assembly language example, the hexadecimal opcodes
of the program are written in the sequence in the
code/data fields of the S2 records:

Address Opcode Instruction

00040000 7C8402A6 MFSPR R4,4

00040004 90830000 STW R4,$0(R3) ($00000000)

00040008 7C8502A6 MFSPR R4,5

0004000C 90830004 STW R4,$4(R3) ($00000004)

00040010 4E800020 BCLR 20,0

00040014 00000000 WORD $00000000

00040018 65040000 ORIS R4,R8,$0

0004001C 65040024 ORIS R4,R8,$24

00040020 00000000 WORD $00000000

00040024 00000000 WORD $00000000

42 The checksum of this S2 record.

S2 S-record type S2, indicating that it is a code/data
record to be loaded/verified at a 3-byte address.

0C Hexadecimal 0C (decimal 12), indicating that 12
character pairs, representing 12 bytes of binary data,
follow.

040020 Six-character 3-byte address field; hexadecimal
address 00040020, where the code/data which follows
is to be loaded.

D-6 Embedded Communications Computing Web Site

S-Record Format

D

The S8 record is explained as follows:

Each printable character in an S-record is encoded in a hexadecimal
representation of the binary bits which are actually transmitted. Below is
the example S0 record, as sent in hexadecimal, with an ascii
representation:

0000000000000000 The next 8 character pairs of the second S2 record are
the ASCII bytes of the actual program code/data.

CF The checksum of this S2 record.

S8 S-record type S8, indicating that it is a termination
record

04 Hexadecimal 04, indicating that four character pairs (4
bytes) follow

040000 The address field, indicating the address of the
instruction to which control may be passed (program
entry point)

F7 The checksum of this S8 record

 T L A C/D Ch

S 0 0 A 0 0 0 0 6 7 6 5 7 4 5 F 7 2 7 4 6 3 0 D

593030413030303036373635373435463732373436333044

E

E-1

EDisk and Tape Controllers

Disk and Tape Support
PPCBug supports the disk and tape controller devices listed in Table E-1. The
controller addresses listed are the base addresses for each controller. The controller
can be addressed by the CLUN during the PBOOT or IOP commands, or during
system calls .DSKRD or .DSKWR.

Notes * Varies, depending on the user’s SCSI setup.

** These PCI addresses for your disk and tape controllers can
vary depending on your board and your particular setup. See the
“iot” command for further details on displaying the PCI address
for specific devices.

Table E-1. Disk and Tape Controllers Supported

CLUN Controller Controller
Address

Number of
Devices

 1 PC8477 $800003F0 1

 2 PC87303IDE $800001F0 2

x NCR53C810 Any PCI** *

x NCR53C825 Any PCI** *

x NCR53C875 Any PCI** *

x SL82C105 Any PCI** 4

x PBC-EIDEF1 Any PCI** 4

E-2 Embedded Communications Computing Web Site

Disk and Tape Controllers

E

Floppy Drive Configuration Parameters
The following table lists the parameters used for configuring floppy disk
drives with the IOT command and the .DSKCFIG system call.

Table E-2. Floppy Drive Configuration Parameters

Configuration Parameter Floppy Types and Formats

PCXT8 PCXT9 PCXT9_
3

PCAT PS2 SHD

Sector Size
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 2 2 2 2 2 2

Block Size:
0- 128 1- 256 2- 512
3-1024 4-2048 5-4096 = 1 1 1 1 1 1

Sectors/Track 8 9 9 F 12 24

Number of Heads = 2 2 2 2 2 2

Number of Cylinders = 28 28 50 50 50 50

Precomp. Cylinder = 28 28 50 50 50 50

Reduced Write Current
Cylinder =

28 28 50 50 50 50

Floppy Drive Configuration Parameters

http://www.motorola.com/computer/literature E-3

E

Note 1.All numerical parameters are in hexadecimal unless
otherwise noted.

2. PS2 is the default format for PPCBug.

3. The SHD format is supported effective with PPC1Bug version
1.2.

Step Rate Code = 0 0 0 0 0 0

Single/Double DATA
Density =

D D D D D D

Single/Double TRACK
Density =

D D D D D D

Single/Equal_in_all Track
Zero Density =

E E E E E E

Slow/Fast Data Rate = S S S F F F

Other Characteristics

Number of Physical Sectors 0280 02D0 05A0 0960 0B40 1680

Number of Logical Blocks
(in hundreds)

0500 05A0 0B40 12C0 1680 2D00

Number of Bytes (decimal) 327680 368460 737280 1228800 147456
0

294912
0

Media Size/Density 5.25/DD 5.25/DD 3.5/DD 5.25/HD 3.5/HD 3.5/ED

Table E-2. Floppy Drive Configuration Parameters

Configuration Parameter Floppy Types and Formats

PCXT8 PCXT9 PCXT9_
3

PCAT PS2 SHD

E-4 Embedded Communications Computing Web Site

Disk and Tape Controllers

E

F

F-1

FDisk Status Codes

Introduction
The status word returned by the disk system call routine flags an error
condition if it is nonzero. The most significant byte of the status word
reflects controller independent errors, and they are generated by the disk
trap routines. The least significant byte reflects controller dependent
errors, and they are generated by the controller. The status word is shown
below:

Because of the nature of the SCSI and IDE/EIDE Host Adapters,
additional status may be returned. The format of the additional error status
is as follows:

SCSI

The SCSI command is a byte that identifies the command that was issued
in which the Sense Key was returned. The Sense Key is a byte that is
returned in Request Sense Data buffer (byte number two). Refer to the
ANSI X3T9.2 SCSI Specification.

15 8 7 0

Controller-Independent Controller-Dependent

15 8 7 0

SCSI Command Sense Key

F-2 Embedded Communications Computing Web Site

Disk Status Codes

F

ATA (Hard Disks/CD-ROM Drives)

The ATA command is the byte that identifies the command creating the
error condition reported in the error register. For the definition of the error
register contents, refer to the AT Attachment Interface with Extensions
(ATA-2) specification (X3T10-948D).

ATAPI (CD-ROM Drives)

For ATAPI devices, the upper byte reflects the command causing the
failure reported in the Sense Key/Error Reg byte. If the sense key (bits 4
through 7) contains a nonzero value, then two more bytes containing
additional sense data is returned as follows:

For the definition of the error register contents, sense key data, ASC, and
ASQ, refer to the ATA Packet Interface for CD-ROMs specification (SFF-
8020i).

15 8 7 0

ATA Command Error Register Contents

15 8 7 0

ATAPI Command Sense Key Error Reg

15 8 7 0

ASC ASQ

Controller-Independent Status Codes

http://www.motorola.com/computer/literature F-3

F

Controller-Independent Status Codes
The definitions for the controller-independent errors are defined in Table
F-1, shown below.

SCSI Firmware Status Codes
The SCSI firmware returns codes for the SCSI Bus status and the SCSI I/O
Processor (NCR53C810, NCR53C825, or NCR53C875) status. Table F-2
lists the codes and a description of each.

The debugger returns a single word (16 bits) for an error code. The upper
byte is Controller-Independent, and is assigned by the debugger. The lower
byte is Controller-Dependent. It is formed by selecting one of two bytes of
error information returned by the firmware, either the SIOP) Status or the
SCSI Bus Status.

Table F-1. Controller-Independent Status Codes

Code Description

$00 No error detected

$01 Invalid controller type

$02 Controller descriptor not found

$03 Device descriptor not found

$04 Controller already attached

$05 Descriptor table not found

$06 Invalid command packet

$07 Invalid address for transfer

$08 Block conversion error

$09 Invalid parameter in configuration

$0A Transfer data count mismatch error

$0B Invalid status received in command packet

$0C Command aborted via break

F-4 Embedded Communications Computing Web Site

Disk Status Codes

F

If the SCSI Bus Status byte returned by the firmware is non-zero, this byte
is returned as the Controller-Dependent code, and the SIOP Status byte is
thrown away. If the SCSI Bus Status is zero, the SIOP Status byte is
returned.

Therefore, there is dual use of the Controller-Dependent error code byte
for error code bytes $02, $04, $08, $10, $14, and $18. For example, if the
Controller-Dependent value returned by the debugger is $02, this code
could have two possible meanings:

SCSI Bus Status: Check Condition

SIOP Status: Command aborted - SCSI bus reset

Table F-2. SCSI Firmware Status Codes

Code Description

SCSI Bus Status

$00 Good completion

$02 Check condition

$04 Condition met good

$08 Busy

$10 Intermediate good

$14 Intermediate condition met good

$18 Reservation conflict

$22 Command terminated

$28 Queue full

SIOP Status

$00 Good status

$01 No operation bits were set

$02 Cmd aborted - SCSI bus reset

$03 Cmd aborted - bus device reset message

$04 Cmd aborted - abort message

$05 Cmd aborted - abort tag message

$06 Cmd aborted - clear queue message

$07 Data overflow - Too much data

SCSI Firmware Status Codes

http://www.motorola.com/computer/literature F-5

F

$08 Data underrun - Not enough data

$09 Clock faster than 75 MHz

$0A Bad Clock parameter - ASCII clock value Zero or Non-ASCII

$0B Queue depth too large (> 255)

$0C Selection timeout

$0D Reselection timeout

$0E Bus error during a data phase

$0F Bus error during a non-data phase

$10 Illegal NCR script instruction

$11 Command aborted - unexpected disconnect

$12 Command aborted - unexpected phase change

$13 SCSI bus hung during command

$14 Data phase not expected by user

$15 Data phase was in wrong direction

$16 Incorrect phase following select

$17 Incorrect phase following message-out

$18 Incorrect phase following data

$19 Incorrect phase following command

$1A Incorrect phase following status

$1B Incorrect phase following rptr message

$1C Incorrect phase following sdptr message

$1D No identify message after re-selection

$1E SIOP failed during script patching

$1F SIOP not attached to SCSI bus

Table F-2. SCSI Firmware Status Codes (Continued)

Code Description

F-6 Embedded Communications Computing Web Site

Disk Status Codes

F

ATA/ATAPI Firmware Status Codes

Note The marketing terms IDE and EIDE are often used when
describing the ATA and ATAPI interface and protocol. The
underlying technologies behind these are defined by the ATA and
ATAPI standards proposed by the Accredited Standards
Committee (ASC) and the Small Form Factor Committee (SFFC)
respectively. ATA falls under the X3T10 umbrella of the ASC,
while the proposed ATAPI specification is described by the SFF-
8020 document set forth by the SFFC. SFFC has also proposed a
number of other ATA-related documents. This PPCBug user’s
manual uses either the IDE/EIDE or the ATA/ATAPI
nomenclature, as seems appropriate.

The debugger returns a single 16-bit word for an error code unless
additional status is available. For ATA commands, the additional status
comprises one 16-bit word; for ATAPI, up to two 16-bit works are
returned.

The first 16-bit word contains the ATA/ATAPI command and the contents
of the error register. In response to ATAPI commands, it also contains the
sense key code. For non-zero sense key values, an additional 16-bit word
is returned, concatenated to the second 16-bit word. This third status word
indicates the ASC and ASQ values returned by the device in response to
an ATAPI packet command.

Below is a list of controller dependent error codes and a short description
of each for the IDE and EIDE controllers. For definition of the error
register and the sense codes, refer to the appropriate ATA and/or ATAPI
documents:

ATA - AT Attachment Interface with Extensions (ATA-2)
-X3T10-948D
ATAPI - ATA Packet Interface for CD-ROMs
- SFF-8020i.

ATA/ATAPI Firmware Status Codes

http://www.motorola.com/computer/literature F-7

F

Table F-3. ATA/ATAPI Controller-Dependent Errors

Code Description

$00 Good Status

$01 Error Register contents valid

$02 Index error (vendor specific)

$04 Correctable data error

$08 Data transfer failure (Data Request from device missing)

$10 Bit 4 error (vendor specific)

$20 Device fault

$40 Device not ready

$80 Device busy (command/data transfer in progress)

$F1 Controller initialization failure

$F2 Invalid parameter

$F3 Sector size not supported

$F4 Command not supported

$F7 Data Overflow

$F8 Controller Configuration Error

F-8 Embedded Communications Computing Web Site

Disk Status Codes

F

G

G-1

GEstablishing Network
Connections with PPCBug

The procedure below can be used to establish a network connection using
standard PPCBug commands from a PowerPC board with a compatible
network connectivity device.

1. Ensure the RTC (Real Time Clock) is functioning (Note: An
RTC is not available on all boards. Boards without an RTC emulate
a clock.).

Network operations (and ROM boots) will fail if the board’s RTC is
not running. Boards are shipped from Motorola with the RTC in
powersave mode to conserve battery life. The battery is switched
ON or OFF by means of the PS or SET commands. To determine if
the RTC is turned ON issue the TIME command. If Bug responds
with the message the RTC clock is not ticking the
board is in powersave mode. Turn on the clock by issuing the TIME
command as described in this manual. The command format is:

SET mmddyyhhmm

Once running, the RTC will operate continuously until a PS
command is issued.

2. Configure the board’s IP addressibility using the NIOT
command.

Refer to the section in this manual dealing with the NIOT command
for a complete explanation of this command.

The board’s defaults (set by ENV:d) are adequate for all options
except:

Client IP address: set to the IP address assigned to the PowerPC
board.

Server IP address: set to the IP address from which the code is to be
loaded. Note: the server must be running a TFTP daemon.

Subnet IP address mask: set if the server IP and client IP addresses
are on different networks.

G-2 Embedded Communications Computing Web Site

Establishing Network Connections with PPCBug

G

Gateway IP address: set if a gateway will be required to traverse the
network.

Boot file name: use to select the boot file location if use of NBO is
planned.

Parameters for the default controller are saved in NVRAM at the
value specified in the ENV parameter Network Auto Boot
Configuration Parameters Offset (NVRAM). If this value is invalid
NIOT will respond with an error message and not save the values
entered. The default value set by ENV;d is adequate.

3. Verify network connectivity using the NPING command.

Network connectivity can now be verified using the NPING
command. Note: PPCBug does not respond to a network ping;
consequently, NPINGs can only be sent from a device with
PPCBug to a device without PPCBug.

The format of the NPING command is:

NPING ControllerLUN DeviceLUN SourceIP DestinationIP
Number_of_packets

Thus to ping a host at 172.27.197.64 with a board at
172.27.14.92 the command would be:

NPING 0 0 172.27.14.92 172.27.197.64 1

As the number of packets to be sent defaults to infinity (in other
words, until the user hits the BREAK key) specifying a reasonable
limit is desirable. NPING is not quick so be patient. When control
returns to the user NPING will print the results in terms of Number
of Packets Transmitted, Number of Packets Lost, and Packet Size.
Note that NPING returns the number of packets lost, not the number
received. A successful connection is when this value is zero.

4. TFTP load code using the NIOP command or network boot
using the NBO command.

Errors returned can be decoded using the tables in Appendix H,
Network Communication Status Codes, in this manual.

H

H-1

HNetwork Communication Status
Codes

There are two types of network communication status codes, controller
independent and controller (DEC21040, DEC21140, DEC21143, or Intel
82559/ER) dependent.

The controller independent error codes are independent of the specified
network interface. These errors are normally some type of operator error.
The controller dependent error codes relate directly to the specified
network interface. These errors occur at the driver level out to and
including the network.

The status word returned by the network system call routine flags an error
condition if it is nonzero. The most significant byte of the status word
reflects controller independent errors, and they are generated by the
network trap routines. The least significant byte reflects controller
dependent errors, and they are generated by the controller. The status word
is shown below:

The error codes are returned by driver, and will be placed in the controller
dependent field of the command packet status word. All error codes must
be non-zero, an error code of $00 signifies no error.

15 8 7 0

Controller-Independent Controller-Dependent

Table H-1. Controller-Independent Status Codes

Code Description

$01 Invalid controller logical unit number

$02 Invalid device logical unit number

$03 Invalid command identifier

$04 Clock (RTC) is not running

$05 TFTP retry count exceeded

$06 BOOTP retry count exceeded

$07 NVRAM write failure

H-2 Embedded Communications Computing Web Site

Network Communication Status Codes

H

$08 Illegal IPL load address

$09 User abort, break key depressed

$0A Time-out expired

$81 TFTP, File not found

$82 TFTP, Access violation

$83 TFTP, Disk full or allocation exceeded

$84 TFTP, Illegal TFTP operation

$85 TFTP, Unknown transfer ID

$86 TFTP, File already exists

$87 TFTP, No such user

Table H-2. DEC21040/21140/21143 Controller Status Codes

Code Description

$01 Buffer not 16 byte aligned

$02 Shared memory buffer limit exceeded (software)

$03 Invalid data length (MIN <= LNGTH <= MAX)

$04 Initialization aborted

$05 transmit data aborted

$06 PCI base address not found

$07 No Ethernet port available on base-board

$10 System error

$11 Transmitter babble error

$12 Transmitter excessive collisions

$13 Transmitter process stopped

$14 Transmitter underflow error

$15 Transmitter late collision error

$16 Transmitter loss of carrier

$17 Transmitter 10baseT link fail error

$18 Transmitter no carrier

Table H-1. Controller-Independent Status Codes (Continued)

Code Description

http://www.motorola.com/computer/literature H-3

H

$19 Transmitter timeout on PHY

$20 Receiver CRC error

$21 Receiver overflow error

$22 Receiver framing error

$23 Receiver last descriptor flag not set

$24 Receiver frame damaged by collision

$25 Receiver runt frame received

$28 Transmitter time out during a normal transmit

$29 Transmitter time out during a port setup

$30 SROM corrupt

Table H-3. Intel 82559/ER Controller Status Codes

Code Description

$01 EEPROM read error

$02 EEPROM checksum error

$03 Unable to allocate PORT test memory

$04 Port self-test failed

$05 CU command execution error

$06 Illegal CU action command requested

$10 Requested TX exceeds transmit buffer size

$20 RX TCO packet processed

$21 RX Individual Address mismatch

$22 RX no Individual Address match

$23 RX invalid header TYPE value

$24 RX indeterminate error

Table H-2. DEC21040/21140/21143 Controller Status Codes (Continued)

Code Description

IN-1

Index

Symbols
.BINDEC routine 5-63
.BRD_ID routine 5-69, B-3
.CHK_SUM routine 5-68
.CHKBRK routine 5-13
.DELAY routine 5-55
.DIAGFCN routine 5-79
.DIVU32 routine 5-67
.DSKCFIG routine 5-17
.DSKCTRL routine 5-30
.DSKFMT routine 5-27
.DSKRD routine 5-14
.DSKWR routine 5-14
.ENVIRON routine 5-72
.ERASLN routine 5-51
.FORKMPUR function 5-94
.IDLEMPU function 5-99
.INCHR routine 5-7
.INLN routine 5-9
.INSTAT routine 5-8
.IOCONFIG routine 5-107
.IODELETE routine 5-108
.IOINFORM routine 5-105
.IOINQ routine 5-99
.MULU32 routine 5-66
.NETCFIG routine 5-34
.NETCTRL routine 5-44
.NETFOPN routine 5-40
.NETFRD routine 5-42
.NETRD routine 5-32
.NETWR routine 5-32
.OUTCHR routine 5-47
.OUTLN routine 5-48

.OUTSTR routine 5-48

.PCRLF routine 5-50

.PFLASH function 5-76

.READLN routine 5-12

.READSTR routine 5-10

.REDIR routine 5-60

.REDIR_I routine 5-61

.REDIR_O routine 5-61

.RETURN routine 5-62

.RTC_DSP routine 5-58

.RTC_DT routine 5-57

.RTC_RD routine 5-59

.RTC_TM routine 5-56

.SIOPEPS routine 5-91

.SNDBRK routine 5-54

.STRCMP routine 5-65

.SYMBOLTA routine 5-110

.SYMBOLTD routine 5-112

.WRITD routine 5-52

.WRITDLN routine 5-52

.WRITE routine 5-49

.WRITELN routine 5-49

A
abort mode 1-19
access disk 3-95
access tape 3-95
ADDR argument 2-4
address modes 4-8
address modifier 5-16, 5-18, 5-28, 5-31
Address Resolution Protocol (ARP) 1-30
address sizes xxiii, 1-37
alternate boot device B-1

Index

IN-2 Embedded Communications Computing Web Site

I
N
D
E
X

arguments 2-2
ADDR 2-4
EXP 2-2
PORT 2-6

ARP 1-30
AS command 3-5, 4-11
assembler 3-131, 4-1, 4-2, 4-11
assembler error messages 4-14
assembly language 4-1

how used 1-2
assert SYSFAIL* 1-21
assign

port 3-183, 3-185
serial port as console 3-227

assign value to variable 5-64
ATA (hard disks/CD-ROM drives) F-2
ATA/ATAPI controller-dependent errors F-7
ATA/ATAPI firmware status codes F-6
ATAPI (CD-ROM drives) F-2
attach

printer to a port 3-173
symbol table to debugger 3-218, 5-110

attribute mask (IOSATM, IOSEATM) 5-22
attribute word 5-22
attribute word (IOSATW, IOSEATW) 5-24
Auto Boot 1-13

B
battery

power save mode 3-192
baud rate B-5
BC command 3-6
BF command

command
BF 3-8

BI command 3-11
big-endian byte ordering xxiv, 1-37
Binary Coded Decimal (BCD) 5-63
binary number 5-63
Block of Memory Compare 3-6
Block of Memory Fill 3-8
Block of Memory Initialize 3-11

Block of Memory Move 3-13
block of memory move 3-13, 3-42
block of memory search 3-18
block of memory verify 3-23
blocks 1-23

retrieve 5-42
BM command 3-13
board ID packet 5-69
board identification/information B-3
board information block 3-31
boot

network 3-147
boot device B-1
boot halt

network 3-145
BOOTP 1-30, 3-147
bootstrap operating system 1-25, 3-175
Bootstrap Protocol (BOOTP) 1-30, 3-147
BR command 3-16
branch commands 4-13
break 5-54

check for 5-13
breakpoint

delete 3-16
insert 3-16
temporary 3-80, 3-231

BS command 3-18
BV command 3-23
byte xxiii, 1-37
byte ordering xxiv, 1-37

C
CACHE

command 3-26
Cache Control 3-26
CFGA 5-19
change configurable parameters (IOT com-

mand) 1-24
change register 3-205
characters

output 5-47
check for break 5-13

http://www.motorola.com/computer/literature IN-3

I
N
D
E
X

check function 5-79
checksum

CS command 3-35
generate 5-68

clock
real-time 5-58

clock speed calculation 1-22
clock, real-time 5-57
CLUN 1-24, 3-89, 3-92, 3-102, 3-151, 5-15,

5-18, 5-19, 5-27, 5-30
CM command 3-27
CNFG command 3-31
code execution 3-77, 3-80
code execution. 3-61
cold reset 3-202
command

 3-88
AS 3-5
BC 3-6
BI 3-11
BM 3-13
BR/NOBR 3-16
BS 3-18
BV 3-23
CACHE 3-26
CM 3-27
CNFG 3-31
CS 3-35
CSAR 3-37
CSAW 3-38
DC 3-39
DEVINIT 3-73
DMA 3-42
DS 3-49
DU 3-50
ECHO 3-52
FORD 3-59
GD 3-61
GEVBOOT 3-63
GEVDEL 3-69
GEVDUMP 3-70
GEVEDIT 3-72

GN 3-75
GO 3-77
GT 3-80
HE 3-83
IBM 3-86
IOC 3-89
IOI 3-92
IOP 3-95
IOT 3-101
LO 3-110
MA 3-115
MAE 3-118
MAL 3-120
MAR 3-121
MAW 3-123
MD 3-125
MDS 3-125
MENU 3-129
MM 3-130
MMD 3-134
MMGR 3-136
MS 3-140
MW 3-141
NAP 3-144
NBH 3-145
NBO 3-147
NIOC 3-151
NIOP 3-157
NIOT 3-161
NOPF 3-183
NPING 3-168
OF 3-170
PA 3-173
PBOOT 3-175
PF 3-183
PFLASH 3-188
PS 3-192
RB 3-193
RD 3-195
REMOTE 3-201
RESET 3-202
RL 3-204

http://www.mcg.mot.com/literature

Index

IN-4 Embedded Communications Computing Web Site

I
N
D
E
X

RM 3-205
RS 3-208
RUN 3-210
SD 3-212
SET 3-213
SROM 3-214
SYM 3-218
SYMS 3-221
T 3-223
TA 3-227
TIME 3-228
TM 3-229
TT 3-231
VE 3-234
VER 3-238
WL 3-242

command arguments 2-2
command entry

control characters 2-6
command options 2-6
command packet 3-151, 5-17, 5-27, 5-30

send 3-89
command syntax 2-1
commands 3-1

disk I/O 1-24
help 3-83

communicate with host computer 3-229
compare strings 5-65
compares memory contents 3-6
concurrent mode 3-27, B-7
confidence tests 1-4
Configuration Area Block (CFGA) 5-19
configure

board information block 3-31
disk 5-17
disk controller 3-101
network parameters 5-34
operational parameters 3-54
port 3-183, 3-184, 5-107

configure network parameters 5-34
connect

console port to a port 3-229

console
assign serial port 3-227

console port
connect to a port 3-229

console serial port 3-229
context switching 2-10
control

return to PPCBug 5-62
control characters

command input and output 2-6
control routines

implement 5-44
controller configuration 1-27
controller device documents A-3
Controller Logical Unit Number (CLUN)

1-24, 3-89, 3-92, 3-102, 3-151,
5-15, 5-18, 5-19, 5-27, 5-30

controller parameters
default 1-27

controller-independent status codes F-3, H-1
controllers

network G-1
conversation mode B-8
CS command 3-35
CSAR command 3-37
CSAW command 3-38

D
data conversion 3-39
data sizes xxiii, 1-37
date

display 3-228, 5-58
initialize 5-57
set 3-213

DC command 3-39
debug port 5-1
debugger commands 3-1, 3-83
debugger directory 1-12, 3-212
debugger error messages C-2
debugging modular code 3-75
DEC21040 controller status codes H-2
default configuration 1-27

http://www.motorola.com/computer/literature IN-5

I
N
D
E
X

default controller parameters 1-27
default device parameters 1-27
default input port 5-1
default output port 5-1
define macros 3-115
delay timer 5-55
delete I/O port 5-108
delete macros 3-115
detach

port 3-173, 3-183
symbol table 3-219, 5-112

device descriptor packet 5-18
device descriptor table 1-23, 3-92, 3-102
Device Logical Unit Number (DLUN) 1-24,

3-89, 3-92, 3-103, 3-151, 5-15,
5-18, 5-19, 5-27, 5-30

device parameters
default 1-27

device probe 1-23
diagnostic codes

for LED/Serial startup 1-7
diagnostic directory 1-12, 3-212
diagnostic function 5-79
diagnostics

return from System Menu B-2
Direct Memory Access (DMA) 3-43
directives 4-2
directories

switching from one to the other 1-12
disable macro listing 3-120
disable ROMboot 3-193
disassembled source line 4-4
disassembler 3-49, 3-131, 4-1, 4-4, 4-11
disk

configure 5-17
read/write 5-14
status codes F-1

disk access 3-95
disk configuration 3-101
disk configure routine 5-17
disk control 5-30
disk control routine 5-30

disk controller 1-26, E-1
disk format 3-95, 5-27
disk format routine 5-27
disk I/O 1-24

debugger commands 1-24
error codes 1-27
support 1-22
system calls 1-26

disk I/O control 3-89
disk read 3-95
disk read routine 5-14
disk transfer 1-23
disk write 3-95
display

date 3-228
time 3-228

display host’s hardware subsystems 3-238
display macros 3-115
display register 3-205
display register state 3-195
display symbol table 3-221
display system test errors B-2
display time 5-58
divide integers 5-67
DLUN 1-24, 3-89, 3-92, 3-103, 3-151, 5-15,

5-18, 5-19, 5-27, 5-30
DMA 3-43
DMA command 3-42
double precision 2-13
double-button reset 1-20
download data 3-111
download S-records 3-111
DRAM requirements

for Bug 1-3
DS command 3-49, 4-13
DU command 2-8, 3-50
dump memory to tape B-2
dump S-records 3-50

E
ECHO command 3-52
Echo String 3-52

http://www.mcg.mot.com/literature

Index

IN-6 Embedded Communications Computing Web Site

I
N
D
E
X

edit macros 3-118
enable macro listing 3-120
enable ROMboot 3-193
entering and debugging programs 2-7
ENV

startup diagnostic code enabler 1-7
ENV command 3-54
environment

set 3-54
environment parameters

read/write 5-72
erase line 5-51
error codes

disk I/O 1-27
disk system calls F-1
network I/O 1-31
network system calls H-1
SCSI F-1

error correction code (ECC) 3-105
error messages C-2

assembler 4-14
errors

system test B-2
errors, controller-dependent

ATA/ATAPI F-7
Ethernet controller 1-28
Ethernet driver 1-28
Ethernet network

booting 1-18, 1-28
Ethernet packets 1-28
exception handler 5-68
exception handler semaphore 3-211
exception vectors 2-9
execute debugger 3-210
execute instruction 3-223
execute program 3-77
EXP argument 2-2

F
file

open for read 5-40
file blocks

retrieve 5-42
file number B-3
file zero structure B-3
fill memory 3-8
fixed-length buffer 5-12
flag byte 5-15, 5-28
FLASH image 1-2, 3-189
FLASH memory 1-2, 3-188, 3-189

programming with .PFLASH function
5-76

floating point instruction 2-12
floppy disk

configuration E-2
IOT command parameters E-2

fork
idle MPU 5-94
MPU 5-93

FORK command 3-59
fork idle MPU 5-94
Fork Idle MPU at Address 3-59
Fork Idle MPU with Registers 3-60
fork MPU 5-93
FORKWR command 3-60
format

disk 3-95, 5-27
S-records D-1
tape 3-95

function
diagnostic 5-79

G
GCSR (see Global Control and Status Regis-

ters) 1-35
GD command 2-1, 2-10, 3-61
generate checksum 5-68
get files 3-157
get from host 5-32
GEVBOOT command 3-63
GEVDEL command 3-69
GEVDUMP command 3-70
GEVEDIT command 3-72
GEVINIT command 3-73

http://www.motorola.com/computer/literature IN-7

I
N
D
E
X

GEVs (Global Environment Variables) 3-64
GEVSHOW command 3-74
Global Environment Variables (GEVs) 3-64
GN command 2-10, 3-75
GO command 2-1, 2-10, 3-77, 3-80, 3-111
go to temporary breakpoint 3-80
GT command 2-1, 2-10, 3-80

H
half-word xxiv, 1-37
hardcopy mode 2-7, 3-131, 5-51, 5-104
HE command 3-83
help 3-83
host

read/write 5-32

I
I/O

disk 1-22
network 1-28

I/O control
disk 3-89
network 3-151

I/O control structure 5-103
I/O error codes

disk 1-27
network 1-31

I/O function 5-60
I/O inquiry 1-24, 3-92
I/O physical

network 3-157
I/O port change 5-105
I/O, disk

debugger commands 1-24
system calls 1-26

I/O, redirect 5-60
IBM command 3-86
idle

processor 5-93
IDLE command 3-88
Idle Master MPU 3-88

Idle MPU Register Display/Modify/Set
3-109

idle MPU with registers, fork at address 3-60
idle MPU, fork at address 3-59
idle processor 3-59, 3-60, 3-88, 3-109, 3-210
implement special control routines 5-44
Indirect Block Move (IBM) 3-86
initialize date 5-57
initialize parity 3-11
initialize RTC 5-56, 5-57
initiate service call 3-201, B-2
input

redirect 5-61
input character routine 5-7
input line routine 5-9
input port 5-1
input serial port status 5-8
Inquiry SCSI command 1-23
instruction execution 3-223
instruction fields 4-6
instruction mnemonics 4-4
integers

divide 5-67
multiply 5-66

Internet Protocol (IP) 1-28
introduction F-1
invoking system calls 5-1
IOC command 1-24, 1-27, 3-89
IOI command 1-24, 3-92
IOP command 1-24, 3-95, 3-101
IOSATM 5-22
IOSATW 5-24
IOSEATM 5-22
IOSEATW 5-24
IOSEPRM 5-23
IOSPRM 5-23
IOT command 1-23, 1-24, 3-101, E-2
IP (Internet Protocol) 1-28
IRD command 3-109
IRM command 3-109
IRS command 3-109

http://www.mcg.mot.com/literature

Index

IN-8 Embedded Communications Computing Web Site

I
N
D
E
X

L
LAN coprocessor 1-28
LED/serial startup diagnostic codes 1-7, 3-57
line

erase 5-51
output 5-48, 5-49
read 5-12

little-endian byte ordering xxiv, 1-37
LO command 2-8, 3-110
load control program 3-145
load FLASH memory 3-189
load macros 3-121
load operating system 3-145
load S-records 3-110, 3-111
logical blocks 1-23
loop

read 3-204

M
MA command 3-115
Macro Define/Display 3-115
macros 3-120

define 3-115
delete 3-115
edit 3-118
load 3-121
save 3-123

MAE command 3-115, 3-118
main processor registers 4-5
MAL command 3-120
manual modem connection B-9
MAR command 3-121
MAW command 3-123
MD command 2-12, 3-125, 4-13
MDS command 3-125
memory 3-130

dump to tape B-2
write 3-141

Memory Display 3-125
memory fill 3-8
Memory Management Unit (MMU) 2-8
memory manager command 3-136

memory map diagnostic 3-134
memory modify 3-130
memory move 3-13
Memory Requirements 2-9
memory requirements 2-9

for Bug 1-3
memory search 3-18
memory set 3-140
memory status 5-83
memory usage control 3-58
memory verify 3-23
MENU command 3-129, B-1
menu, system B-1
MESS command B-7
messages C-1
microprocessor documents A-3
MM command 2-12, 3-130, 4-11
MMD command 3-134
MMGR command 3-136
MMU 2-8
mnemonic directives 4-2
mnemonics

assembly language 4-2
Mode Sense SCSI command 1-23
modems B-5

manual connection B-9
modular code

debugging 3-75
MPU 5-94

fork idle 5-94
fork multiple 5-93
idle 5-99

MPU and CPU registers 2-10
MPU clock speed

calculation 1-22
MPU Execution/Status 3-210
MPU with registers, idle, fork at address 3-60
MPU, idle, fork at address 3-59
MS command 3-140
multiply integers 5-66
Multiprocessor Address Register (MPAR)

organization of 1-34

http://www.motorola.com/computer/literature IN-9

I
N
D
E
X

Multiprocessor Control Register (MPCR)
1-32

contents of 1-33
status codes in 1-33

multiprocessor support 1-31
MW command 3-141

N
NAB command

command
NAB 3-143

NAP command 3-144
NAP MPU 3-144
NBH command 3-145
NBO command 3-143, 3-147
negate SYSFAIL* 1-21
network auto boot 1-18, 3-143
network boot control module 1-30
Network Boot Operating System 3-147
Network Boot Operating System and Halt

3-145
network communication status codes H-1
network configuration 3-161
network control routine 5-44
network controllers G-1
network file open 5-40
network file retrieve 5-42
network I/O 1-28, 3-151
network I/O error codes 1-31
network I/O physical 3-157
network I/O teach 3-161
network parameters

configure 5-34
network ping 3-168
network read/write 5-32
next instruction 3-75
NIOC command 3-151
NIOP command 3-157
NIOT command 3-161
no concurrent mode 3-27
NOBR command 3-16
NOCM command 3-27

NOMA command 3-115
NOMAL command 3-120
Non-Volatile RAM (NVRAM) 3-31, 3-54
NOPA command 3-173
NOPF command 3-183
NORB command 1-14, 3-193
NOSYM command 3-219
NPING command 3-168
NVRAM 3-31, 3-54

size/area allocation 1-3
use of by Bug 1-3

O
OF command 3-170
offset registers 2-5, 3-170
one line assembler 3-5
One-Line Assembler/Disassembler 3-131,

4-1
open file for read 5-40
open file for reading 5-40
operand field 4-4
operating environment 2-8
operating system

block size 5-23
booting 1-25
network boot 3-147
network boot and halt 3-145

operation codes 4-2
operation field 4-3
operational parameters

configure 3-54
view 3-54

operators 4-8
other messages C-3
output

line 5-48, 5-49
redirect 5-61
string 5-48, 5-49
string with data 5-52

output character routine 5-47
output characters 5-47
output port 5-1

http://www.mcg.mot.com/literature

Index

IN-10 Embedded Communications Computing Web Site

I
N
D
E
X

output test status report 5-80

P
PA command 3-173, 4-13
packets 3-151
parameter mask (IOSPRM, IOSEPRM) 5-23
parse value 5-64
PBOOT command 1-25, 3-101, 3-102, 3-175
PCI configuration space READ access 3-37
PCI configuration space WRITE access 3-38
PF command 3-183
PFLASH command 3-188
physical I/O 3-95
physical layer manager 1-28
pointer/count format 5-2
pointer/pointer format 5-2
port

assign 3-183, 3-185
attach printer 3-173
change 5-105
configure 3-183, 3-184, 5-107
connecting 3-229
delete 5-108
detach 3-183, 3-187
detach printer 3-173
inquire 5-100
number 5-105, 5-107, 5-108

PORT argument 2-6
port control structure 5-100, 5-106, 5-108
port status

input 5-8
power save mode 3-192
PPCBug

described 1-1
differences with other MCG Bug pack-

ages 1-2
power-up sequence 1-4
where located 1-2
where used (what products) 1-1

print 5-50
print line feed 5-50
printer

attach to a port 3-173
detach from port 3-173

probe a network 3-168
processor, idling 3-88
program FLASH memory 3-188, 5-76
program listings 4-13
programming 5-76
prompts

Diagnostics/Bug 1-12
PS command 3-192
pseudo-registers 4-5
put files 3-157

R
RARP 1-30, 3-147
RARP server 1-30
RB command 3-193
RCC command B-7
RD command 3-195
read

blocks (IOP command) 1-24
disk 3-95, 5-14
environment parameters 5-72
from host 5-32
line 5-12
loop 3-204
RTC registers 5-59
string 5-10
tape 3-95

read line 5-12
Read string 5-10
read/get from host 5-32
real time clock (RTC) 5-57, 5-59

start 3-213
stop 3-192

redirect I/O 5-60, 5-61
register display, idle MPU 3-109
register modify 3-205
register set 3-208
register state

display 3-195
registers

http://www.motorola.com/computer/literature IN-11

I
N
D
E
X

main processor 4-5
RTC 5-59

related documentation A-1
related specifications A-9
REMOTE command 3-201
remote system B-7
RESET command 3-202
RESET exception 3-202
reset mode 1-19
restarting the system 1-19
retrieve file blocks 5-42
retrieve SCSI pointers 5-91
retrieve specified file blocks 5-42
return ID pointer 5-69
RETURN routine 2-1
return to PPCBug 5-62
Reverse Address Resolution Protocol

(RARP) 1-30
revision display 3-238
RL command 3-204
RM command 3-205
ROM code B-7
ROMboot 1-14

disable 3-193
enable 3-193

ROMboot routine
sample 1-16

RS command 3-208
RTC 5-58, 5-59
RTC chip

start 3-213
stop 3-192

RTC power save mode 3-192
RTC time initialization 5-56
RUN command 3-210

S
save macros 3-123
SC instruction 2-8, 4-10, 5-1
scientific notation 2-14
SCSI bus

status codes F-4

SCSI command F-1
SCSI commands

Inquiry 1-23
Mode Sense 1-23

SCSI error codes F-1
SCSI firmware

status codes F-4
SCSI pointers

retrieve 5-91
SD command 1-12, 3-212
search symbol table 3-221
sectors 1-23
select

alternate boot device B-1
self tests 1-4
selftest name list 5-85
send break 5-54
send command packet 3-89
send command packets (IOC command) 1-24
send to host 5-32
sense key F-1
serial port

assign as console 3-227
serial port status

input 5-8
service call

initiate 3-201, B-2
phone number B-6

service call function B-5
set

breakpoint 3-80
date 3-213
environment 3-54
temporary breakpoint 3-231
time 3-213

SET command 3-213
set-up network configuration 3-161
single precision 2-13
SIOP

status codes F-4
slave map decoders 3-55

http://www.mcg.mot.com/literature

Index

IN-12 Embedded Communications Computing Web Site

I
N
D
E
X

Small Computer System Interface (SCSI)
5-69

source code 4-11
source line 4-3, 4-12
source program 4-3
source programs 4-11
S-records 3-50, 3-110, 3-111

creating D-3
fields D-1
format D-1
types D-2
verify 3-234

SROM command 3-214
SROM Examine/Modify 3-214
start code execution 3-61
status codes

ATA/ATAPI firmware F-6
controller-independent F-3, H-1
DEC21040 controller H-2
disk F-1
network communication H-1
SCSI bus F-4
SCSI firmware F-4
SIOP F-4

status codes in MPCR 1-33
status of MPU 3-210
status word H-1
string

output 5-48, 5-49
string formats 5-2
string with data

output 5-52
strings

compare 5-65
switch directories 3-212
SYM command 3-218
symbol base address 5-110
symbol table

attach 5-110
attach to the debugger 3-218, 5-110
detach 3-219, 5-112
display 3-221

search 3-221
Symbol Table Display/Search 3-221
SYMS command 3-221
syntax

command 2-1
SYSCALL directive 4-2, 4-10
SYSFAIL* 1-21
system call 4-2
system call directive 4-10
System Call handler 2-8, 5-1
System Call instruction 2-8, 5-1
System Call routines 5-2
system calls 2-8, 5-1

disk I/O 1-26
disk, error codes F-1
network, error codes H-1

system console 3-28
System Fail (SYSFAIL*) 1-14
system ID number B-6
System Menu B-1

return to diagnostics B-2
system mode 3-129
system start-up B-1
system test errors B-2
systems with wide SCSI drives running AIX

3-57

T
T command 2-10, 3-223
TA command 3-227
tape

memory dump B-2
tape access 3-95
tape controller E-1
tape format 3-95
tape read 3-95
tape write 3-95
target IP 3-61
temporary breakpoint 3-80, 3-231
terminal attach 3-227
terminal mode operation B-10
TFTP 1-30, 3-147, 3-157

http://www.motorola.com/computer/literature IN-13

I
N
D
E
X

time
display 3-228
set 3-213

TIME command 3-228
time display 5-58
time initialize 5-56
timer delay 5-55
timer delay routine 5-55
TM command 3-229
trace 3-223
trace to temporary breakpoint 3-231
transparent mode 3-229
Trivial File Transfer Protocol (TFTP) 1-30
TT command 2-10, 3-231

U
UDP 1-28
UDS modem B-5
User Datagram Protocol (UDP) 1-28
user packets 1-26

V
variable-length buffer 5-10
VE command 3-234
VER command 3-238
verify S-records 3-234
version display 3-238
VMEbus address modifier 5-16, 5-18, 5-28,

5-31

W
warm reset 3-202
WL command 3-242
word xxiv, 1-37
WORD directive 4-2, 4-9
World Wide Web address A-1
write

blocks (IOP command) 1-24
data 3-141
data loop 3-242
disk 3-95, 5-14
environment parameters 5-72

memory 3-141
tape 3-95
to host 5-32

write data to memory 3-140
write loop 3-242

http://www.mcg.mot.com/literature

Index

IN-14 Embedded Communications Computing Web Site

I
N
D
E
X

	Contents
	List of Figures
	List of Tables
	General Information
	PPCBug Overview
	Comparison with other Motorola Bugs
	PPCBug Implementation
	Memory Requirements
	Size and Address Requirements for NVRAM

	Set-up
	Start-up
	MPU, Hardware, and Firmware Initialization
	LED/Serial Startup Diagnostic Codes

	Running the Diagnostics and Debugger
	Auto Boot
	ROMboot
	Sample ROMboot Routine

	Network Auto Boot
	Restarting the System
	Reset
	Abort
	Reset/Abort
	Break
	Board Failure
	SYSFAIL* Assertion and Negation (VMEbus Boards)

	MPU Clock Speed Calculation

	Disk I/O Support
	Blocks and Sectors
	Device Probe
	Disk I/O via Debugger Commands
	IOI (Input/Output Inquiry)
	IOP (Physical I/O to Disk)
	IOT (I/O Configure)
	IOC (I/O Control)
	PBOOT (Bootstrap Operating System)

	Disk I/O via Debugger System Calls
	Default PPCBug Controller and Device Parameters
	Disk I/O Error Codes

	Network I/O Support��
	Physical Layer Manager Ethernet Driver
	UDP and IP Modules
	RARP and ARP Modules
	BOOTP Module
	TFTP Module
	Network Boot Control Module
	Network I/O Error Codes

	Multiprocessor Support (Remote Start)
	Multiprocessor Control Register (MPCR) Method
	GCSR Method

	Data and Address Sizes
	Byte Ordering

	Using the Debugger
	Entering Commands
	Command Syntax
	Command Arguments
	EXP
	ADDR
	PORT

	Command Options
	Control Characters

	Entering and Debugging Programs
	System Call Routines in User Programs
	Preserving the Operating Environment
	Memory Requirements
	Exception Vectors
	MPU Registers
	MPU Register SPR275
	MPU Registers SPR272-SPR274

	Context Switching
	Floating Point Support
	Single Precision Real
	Double Precision Real
	Scientific Notation

	Debugger Commands
	Introduction
	Debugger Commands
	AS - One-Line Assembler
	BC - Block of Memory Compare
	BF - Block of Memory Fill
	BI - Block of Memory Initialize
	BM - Block of Memory Move
	BR - Breakpoint Insert�� NOBR - Breakpoint Delete
	BS - Block of Memory Search
	BV - Block of Memory Verify
	CACHE - Cache Control
	CM - Concurrent Mode�� NOCM - No Concurrent Mode
	CNFG - Configure Board Information Block
	CS - Checksum
	CSAR - PCI Configuration Space READ Access
	CSAW - PCI Configuration Space WRITE Access
	DC - Data Conversion
	DMA - Block of Memory Move
	DS - One-Line Disassembler
	DU - Dump S-Records
	ECHO - Echo String
	ENV - Set Environment
	FORK - Fork Idle MPU at Address
	FORKWR - Fork Idle MPU with Registers
	GD - Go Direct (Ignore Breakpoints)
	GEVBOOT - Global Environment Variable Boot
	GEVDEL - Global Environment Variable Delete
	GEVDUMP - Global Environment Variable(s) Dump
	GEVEDIT - Global Environment Variable Edit
	GEVINIT - Global Environment Variable Initialization
	GEVSHOW - Global Environment Variable(s) Display
	GN - Go to Next Instruction
	G, GO - Go Execute User Program
	GT - Go to Temporary Breakpoint
	HE - Help
	IBM - Indirect Block Move
	IDLE - Idle Master MPU
	IOC - I/O Control for Disk
	IOI - I/O Inquiry
	IOP - I/O Physical (Direct Disk Access)
	IOT - I/O Configure Disk Controller
	IRD, IRM, IRS - Idle MPU Register Display/Modify/Set
	LO - Load S-Records from Host
	MA - Macro Define/Display�� NOMA - Macro Delete
	MAE - Macro Edit
	MAL - Enable Macro Listing�� NOMAL - Disable Macro Listing
	MAR - Load Macros
	MAW - Save Macros
	MD, MDS - Memory Display
	MENU - System Menu
	M, MM - Memory Modify
	MMD - Memory Map Diagnostic
	MMGR - Memory Manager
	MS - Memory Set
	MW - Memory Write
	NAB - Network Auto Boot
	NAP - NAP MPU
	NBH - Network Boot Operating System, Halt
	NBO - Network Boot Operating System
	NIOC - Network I/O Control
	NIOP - Network I/O Physical
	NIOT - Network I/O Teach (Configuration)
	NPING - Network Ping
	OF - Offset Registers Display/Modify
	PA - Printer Attach�� NOPA - Printer Detach
	PBOOT - Bootstrap Operating System
	PF - Port Format�� NOPF - Port Detach
	PFLASH - Program FLASH Memory
	PS - Put RTC into Power Save Mode
	RB - ROMboot Enable�� NORB - ROMboot Disable
	RD - Register Display
	REMOTE - Remote
	RESET - Cold/Warm Reset
	RL - Read Loop
	RM - Register Modify
	RS - Register Set
	RUN - MPU Execution/Status
	SD - Switch Directories
	SET - Set Time and Date
	SROM - SROM Examine/Modify
	SYM - Symbol Table Attach�� NOSYM - Symbol Table Detach
	SYMS - Symbol Table Display/Search
	T - Trace
	TA - Terminal Attach
	TIME - Display Time and Date
	TM - Transparent Mode
	TT - Trace to Temporary Breakpoint
	VE - Verify S-Records Against Memory
	VER - Revision/Version Display
	WL - Write Loop

	One-Line Assembler/ Disassembler
	Introduction
	PowerPC Assembly Language
	Machine-Instruction Operation Codes
	Directives

	Comparison with the Standard Assembler
	Source Program Coding
	Source Line Format
	Operation Field
	Operand Field
	Disassembled Source Line
	Mnemonics and Delimiters
	Instructions
	Character Set

	Addressing Modes
	WORD Define Constant Directive
	SYSCALL System Call Directive

	Entering and Modifying Source Programs
	Invoking the Assembler/Disassembler
	Entering a Source Line
	Entering Branch Operands
	Assembler Output/Program Listings
	Assembler Error Messages

	System Calls
	Introduction
	Invoking System Calls
	String Formats for I/O

	System Call Routines
	�.INCHR
	�.INSTAT
	�.INLN
	�.READSTR
	�.READLN
	�.CHKBRK
	�.DSKRD�� .DSKWR
	�.DSKCFIG
	Configuration Area Block CFGA Fields

	�.DSKFMT
	.DSKCTRL
	�.NETRD�� .NETWR
	��.NETCFIG
	�.NETFOPN
	�.NETFRD
	�.NETCTRL
	�.OUTCHR
	�.OUTSTR�� .OUTLN
	�.WRITE�� .WRITELN
	�.PCRLF
	�.ERASLN
	�.WRITD�� .WRITDLN
	�.SNDBRK
	�.DELAY
	�.RTC_TM
	�.RTC_DT
	�.RTC_DSP
	�.RTC_RD
	�.REDIR
	�.REDIR_I�� .REDIR_O
	�.RETURN
	�.BINDEC
	�.CHANGEV
	�.STRCMP
	�.MULU32
	�.DIVU32
	�.CHK_SUM
	�.BRD_ID
	�.ENVIRON
	���.PFLASH Function
	.DIAGFCN
	��.SIOPEPS
	.FORKMPU Function
	�.FORKMPUR Function
	��.IDLEMPU Function
	.IOINQ
	�.IOINFORM
	�.IOCONFIG
	�.IODELETE
	�.SYMBOLTA
	�.SYMBOLTD

	Related Documentation
	Motorola Computer Group Documents
	Microprocessor and Controller Documents
	Related Specifications

	System Menu
	Introduction
	Menu Items
	Continue System Start-up
	Select Alternate Boot Device
	Go to System Diagnostics
	Initiate Service Call
	Display System Test Errors
	Dump Memory to Tape

	Using the Service Call Function
	Operation
	Sending Messages
	Concurrent Mode
	Terminating the Conversation and Concurrent Modes

	Manual Connection
	Terminal Connection

	PPCBug Messages
	Introduction
	Error Messages
	Other Messages

	S-Record Format
	Introduction
	S-Record Content
	S-Record Types
	Creating S-Records
	Example

	Disk and Tape Controllers
	Disk and Tape Support
	Floppy Drive Configuration Parameters

	Disk Status Codes
	Introduction
	SCSI
	ATA (Hard Disks/CD-ROM Drives)
	ATAPI (CD-ROM Drives)

	Controller-Independent Status Codes
	SCSI Firmware Status Codes
	ATA/ATAPI Firmware Status Codes

	Establishing Network Connections with PPCBug
	Network Communication Status Codes
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index

