## OPERATION MANUAL

# MODEL 6012 <br> DIGITAL DISPLAY \CONTROLLER 

## September 2011

Version 1c
For software V 3.1X
Universal Display


## hpi

Health Physics Instruments
330 South Kellogg Ave, Suite D
Goleta, CA 93117
(805) 964-3615

FAX: (805) 9643162
Email: info@fwt.com
www.fwt.com
Division of Far West Technology

## TABLE OF CONTENTS

I. INTRODUCTION............................................................................................................................................. 2
II. OPERATION ........................................................................................................................................................ 2
III. INSTALLATION ............................................................................................................................................. 2

INTERFERENCE 3
DISPLAY CONNECTIONS 4
CONTACT CLOSURE FOR EXTERNAL ALARM 4
REMOTE RELAY DRIVER 4
EXTRA DRIVERS 4
RS232/485 4
IV. CONTROL PANEL .......................................................................................................................................................... 5

PUSH-BUTTON SUMMARY 5
PUSH-BUTTON ACTION 5
V. ALARMS ................................................................................................................................................................... 6

ALARM ACTIVATION 6
ALARM 1 (HIGH) 6
ALARM 2 (LOW) 6
FAIL
PRIORITY
6
3
NO ALARM 7
FACTORY SETTINGS 7
TRIP 7
VIEWING ALARMS 7

CALIBRATION MENU 9
SETUP MENU 9
VIII. RS232 SERIAL OUTPUT .......................................................................................................................................... 12

Status Byte 12
BIT FUNCTION 13
SERIAL PROTOCOL 13
VII. CALIBRATION......................................................................................................................................................................... 13

About Calibration, Exponent And Deadtime Factors 13
Radiation Calibration 13
IX. CIRCUIT DESCRIPTION ............................................................................................................................................. 14
DISPLAY 14

MODIFICATIONS 14
X. MAINTENANCE ...................................................................................................................................................... 14 SHORTCUTS 14 ADJUSTMENTS 14 TESTING 14
APPENDIX I ..................................................................................................................................................................................... 16
USER TABLES 16
DISPLAY PARTS LIST ............................................................................................................................................. 18

## I. INTRODUCTION

The Model 6012 Digtial Display and Controller is designed to be used as a readout for a number of different detectors. It has several alarms and trip points that are user set. The front panel display shows the radiation level and the status of the instrument. The following manual will discuss the various settings and functions of the instrument.

## II. OPERATION

The operation of the 6012 is very simple. The first line of the display shows the radiation level from the detector. It is updated every second. The second line shows the status of the alarms and is updated every second. Overrange is indicated on the first line in place of the radiation level. The lights on the front panel also show the status of the alarms. There are no controls that are accessible from the front panel.
When the instrument is first turned on there is a wait until the instrument stabilizes. The number of intervals remaining until normal operation begins is shown on the display along with the version number of the software. The detector may take longer than the wait period to completely stabilize to background levels.

## III. INSTALLATION

The 6012 is easily installed. It usually consists of 2 parts, the detector unit and the display unit. There is a single 4 wire connection between the detector and the 6012. It has a terminal strip for connections and it unplugs from the circuit board to permit removal of the units without unscrewing the cable. The detector and display can be remoted up to 100 feet. We recommend Belden 8723, a 2 pair shielded cable. For short distances any 4 -conductor cable will work. For longer distances or if it is used in a noisy environment we recommend a shielded cable.
The display is installed by first mounting the mounting bracket. The display unit may be in any orientation. It sets into the mounting bracket and is held in place with the two thumbscrews. There are 2 cables that connect to the display. The first is the 2 -conductor power cable from the wall mounted power supply. The second is the 4 conductor cable from the detector. In addition, wires for RS-232, external alarms, or remote drivers may also be connected to the terminal strip.
Remove the bottom half of the front panel by removing the two screws on the front panel and the single screw on the bottom. The power cable and detector cable are connected according to figure 1. Additional cables may be connected to the display as needed for RS-232, relay contacts, or other needs. The cable leads out through the openings on the bottom of the display. Replace the cover unless you want to change the factory settings. There is no on-off switch since this instrument should be operational 24 hours a day. The only way to turn it on and off is to plug and unplug the wall transformer. After the instrument is installed it may be turned on by plugging in the wall transformer. See section X Maintenance for testing alarms.

## INTERFERENCE

Interference can cause annoying false alarms. The most likely cause of interference is from noisy AC switches and lamp dimmers. Plugging the 6012 into a line filter, or the offending product into a line filter can help to eliminate the interference.


## CONNECTIONS TO TERMINALS

## DISPLAY CIRCUIT BOARD



## WALL TRANSFORMER

## CONNECTIONS TO DISPLAY AND POWER

Figure 1 CONNECTIONS TO DISPLAY

## DISPLAY CONNECTIONS

| PIN \# | DESCRIPTION | WIRE COLOR <br> To Detector | USE |
| :--- | :--- | :--- | :--- |
| 1 | +12 VDC Input |  | External Power, Diode isolated |
| 2 | Ground |  | External Power with pin 1 for bat backup |
| 3 | Ground |  | Wall Transformer |
| 4 | +12 VDC Input |  | Wall Transformer |
| 5 | +5 VDC | Black and Shield | To Detector (also shield) |
| 6 | Ground | Red | To Detector |
| 7 | Data + | To Detector |  |
| 8 | Rata - | White | To Detector |
| 9 | Relay NO |  | External Alarm (normally closed) |
| 10 | Relay C |  | External Alarm (center pole) |
| 11 |  | Relay Driver |  |
| 12 | External Output |  | External Relay |
| 13 | External Output |  |  |
| 14 | Ground |  |  |
| 15 | Ground |  | RS232 |
| 16 | RXD |  | RS232 |
| 17 | TXD |  |  |
| 18 | 19 | 20 |  |

## CONTACT CLOSURE FOR EXTERNAL ALARM

The contact closure from the internal relay is on pins 10,11 and 12. Normally an external interlock system would be connected between pin 10 and 12. This alarm operates in the fail-safe mode. If you were to remove power to the display, the relay would open the contacts between pin 10 and 12 . Contacts are rated 0.5 A 115 VAC, 1 A 24 VDC resistive.

## REMOTE RELAY DRIVER

If you do not want to use the internal relay you can install an external 12 volt relay between pin \# 13 and 14. Remove the internal relay by unplugging it before connecting an external relay. The external relay should not draw more than 300 mA .

## EXTRA DRIVERS

Extra drivers are available on pins 15 and 16. PIN 15 driver duplicates the Remote Relay Driver but is not fail-safe. Pin \# 16 is programmable (See section on setup). Both are open collector drivers that need their load between the output and either +5 volts or +12 volts.

## RS232/485

An RS232 output is available between pin 18 (ground) and pin 20 (TX). The status is output every second. Pin 19 $(R X)$ is not supported in this version nor is the RS485.


DISPLAY CIRCUIT BOARD
FIGURE 2 CONTROLS, ADJUSTMENT AND CONTROL PANEL

## IV. CONTROL PANEL

The control panel is under the bottom half of the front panel. Remove the two screws on the front panel and the single screw on the bottom. The control panel is located on the left side of the circuit board and consists of the three push-buttons and the small round trimmer above them (see Figure 2). The three buttons are from left to right, MODE, SET and UP. These names are derived from their use during setup. In this manual they will be referred to as left, center and right push-buttons. The trimmer is to adjust the contrast of the LCD. Turn the trimmer to increase or decrease the contrast of the display. The best setting is where the black squares around the characters just disappear.

## PUSH-BUTTON SUMMARY

| Name | Location | Primary USE |
| :--- | :--- | :--- |
| MODE | LEFT | This is used for changing the settings. |
| SET | CENTER | Pointing to the digit to set when changing settings |
| UP | RIGHT | Increment the digit |

## PUSH-BUTTON ACTION

## During Warm-up Wait period

Left Enter into setup mode
Center Test mode for alarms
Right Start normal operation immediately

## Normal operation

Left Enter into setup mode
Center Quiet Buzzer during alarm
Right Display Alarm status and radiation level without background subtract

## During Setup mode

Left Advance to next item
Center Move arrow that points to a digit
Right Increment the digit pointed to by the arrow

## V. ALARMS

There are 2 alarms built into the instrument. They are based on radiation level and are adjustable both for count rate and for their control over the indicators and relays. The only thing that is not adjustable is their priority.

Alarm 1, and 2 trip if the count level exceeds the alarm setting. The Fail alarm, occurs if there are no counts from the detector for a preset time. Each alarm has different settings, and each alarm is designed to look at a different part of the level. Each alarm may be individually turned off if it is not needed. Alarm 1 and 2 all have several settings associated with them. The different parts of the settings are:

1. Trip set This is the alarm level. This setting is compared with the radiation level in the display.
2. Delay This is the number of seconds that the alarm must be consecutively activated to trip the alarms.
3. Pause This is the number of seconds after the level has decreased below the trip set that the alarm will remain activated. It is used to keep the alarm on longer than one interval. It is usually set around 10 seconds.

## ALARM ACTIVATION

Alarms work in the following manner. When the level rises above the tripset, the delay counts down every interval period from its preprogrammed level. When it reaches zero it turns the alarm on. Until the alarms are activated if the level decreases below the tripset, the delay will reset to its preprogrammed level. This helps to keep noise from tripping the alarm.
The pause works like the delay in that it too counts down every second from its preprogrammed level once the level drops below the tripset. When it reaches zero the alarms will be deactivated for that alarm. If other alarms are still activated they will continue to activate their alarms. If during the pause period the level rises above the tripset again, even for one interval, the pause will be reset to the preprogrammed level. Thus once activated the alarms will stay on for at least the pause period following the last occurrence of a trip. This helps to keep the alarms from cycling on and off in a marginal situation.

## ALARM 1 (HIGH)

This alarm has the highest priority. It trips if the level rises above the tripset. It is usually setup to trip the front panel Trip High LED and to activate the relay and beeper. When tripped it will show ALARM 1 on the second line of the display.

## ALARM 2 (LOW)

This alarm has the next highest priority. It is usually setup to trip the front panel Trip Low LED and to NOT activate the relay and beeper. When tripped it will show ALARM 2 on the second line of the display.

## FAIL

This alarm is used to indicate that the detector is not functioning. It turns off the alarms and indicators and shows FAILURE in the display. It will not activate the relay. This alarm will activate if there are no counts from the detector for a number of seconds. The number of seconds is the only setting. It may be turned off for detectors that have a low count rate.

## PRIORITY

The following table shows the priority of the alarms. Alarm 1 has the highest priority, which means its action will supersede the lower priority alarms. Fail has the lowest priority because if the instrument fails, it obviously has no counts and cannot set the other alarms.

Alarm 1 Highest Priority
Alarm 2
Fail Lowest Priority

## NO ALARM

The No Alarm setting is fixed with the OK LED turned on, the relay and beeper turned off and the display showing OK.

## FACTORY SETTINGS

The following table lists the factory settings for the alarms.

TRIP

| Alarm | Use | Interval | Delay | Trip High <br> LED | Trip Low <br> LED | OK LED | RELAY | BEEPER |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | High Levels | short | short | ON | OFF | OFF | OFF | ON |
| 2 | Warning | short | short | OFF | ON | OFF | ON | OFF |
| FAIL | Detector Failure | N/a | n/a | OFF | OFF | OFF | OFF | OFF |
| Normal | No Trip |  |  | OFF | OFF | ON | ON | OFF |

## VIEWING ALARMS

The delay and pause and trip status can be viewed on the $2^{\text {nd }}$ line of the LCD during normal operation by pushing the right hand push-button under the front panel cover. When the push-button is down, the status of the two alarms will be displayed on the LCD. The two groups represent the alarms and are in the following order from left to right: alarm 1, alarm 2.
The first character of each group is an '*' if the alarm is not tripped and a ' $T$ ' if the alarm is tripped. The next number is a 2 digit hex number of either the delay or the pause. If the alarm is not tripped then it is the delay. If the alarm is tripped then it is the pause. If the alarm is turned off because the tripset is set to 0 , then the alarm will be shown by three dashes (---) in place of the group.

As an example, assume for alarm 2 the delay is set to 5 and the pause is set to 8 . Normally, with no trip, it would read '* 05 '. The ' ${ }^{\prime \prime}$ ' indicates it is not tripped and the ' 05 ' is the delay. If the level was brought higher than the tripset then the delay would start to count down every interval period until it reached zero. This shows the delay period. If the level were to decrease below the trip set during the time it was counting down, then the delay would revert back to its preprogrammed level, which is 5 . When the delay reaches zero, the indicator will change from a '*' to a ' $T$ ' to indicate it has been tripped, and the alarms will be set. The display will then show ' $T 8$ ' and will continue to show 'T8' until the level is brought down below the tripset. When the level is brought below the tripset the pause will start counting down, decreasing by 1 every second. When it reaches zero, the ' $T$ ' will change back to a '"' and the alarms will be set to the no alarm condition.

## VI. SETUP, CALIBRATION, AND PRESETS

The instrument has been setup with its proper values for the detector. These values are programmed into the EEPROM (changeable permanent memory). They can be changed by the user. This section shows how to change the presets. APPENDIX I contains blank forms for recording your settings. We recommend that you copy this page and use it to figure out your changes.
The setup mode is different from the normal operation of the instrument. To enter into the setup mode first access the control panel on the display by removing the bottom half of the front panel. At any time push and hold down the left hand button on the control panel. The display will change to the setup mode in about 1 second and show the first adjustment. Release the button as soon as the setup menu appears. The buttons on the control panel will do the following:
MODE (left hand button) will bring up the next item to adjust. Repeatedly pushing the mode button will cycle through all the adjustments.

SET (center button) will move the arrow on the bottom line from one digit to the next. Every time it is pushed the arrow will move to the next digit. When it gets to the last digit it will jump to the first digit.

UP (right hand button) will increment the digit that the arrow points to. Every time the button is pushed the digit will increase.

It only takes a few seconds of playing with the buttons to understand how they function.
The first 3 adjustments, presets, calibration, and setup are different than the items that follow. Each has @255 on the center of the display. If you set the display to 255 then you will preset the values, enter the calibration adjustment section, or enter the setup adjustment section depending on which menu you started with.

Some adjustments have 3 digits some have 4, and some have an exponent or units. All settings are decimal. Some of the adjustments with 3 digits have a maximum setting of 255 . If they are set above 255 they will actually be set to 255 . The bottom line of the display reminds you that they have a maximum value of 255 . The four digit and decimal/exponent adjustments have no restrictions.

Repeatedly pushing the mode button will cycle the display through all of the adjustments. After the last adjustment the program will go to the same display as at turn on. Remember you can cycle right back into setup from the turn on display, by again pushing down the MODE button until the setup menu appears. Most of the settings are saved in EEPROM after the last item, consequently if you are part way through changing the settings and decide you don't want the new values hold down the left hand button until the turn-on menu appears, then quickly release the button, this will reset the 6012 and put you back in the Setup Mode. You can also turn power off then back on or if the front panel is removed push the reset button.

The following is a list of the parameters in the order that they are seen on the display.
Presets @255
Calibr @255
Setup @255
ALARM A1
ALARM A2
DELAY A1
DELAY A2
PAUSE A1
PAUSE A2
Please read the section on the alarms to become familiar with the action of the alarms. All of the parameters are reviewed below. You must cycle through all of the parameters to get back to a normal display.

## Preset

Set this to 255 or above if you want all of the adjustments to be set to their factory-preset values. If you do not want the factory preset settings, then push mode again to go to the next item.

## Calibration

Set this to 255 or above if you want to enter the calibration menu, which allows you to change the calibration factor and deadtime correction. If you do not want to enter the calibration mode, then push mode again to go to the next item.

## Setup

Set this to 255 or above if you want to enter the setup menu, which allows you to change many constants and items. If you do not want to enter the setup mode, then push mode again to go to the next item.

## Alarm

This is the alarm level. This setting is compared with the level from the detector during the interval. Each of the alarms can be turned off. To turn off alarm 1 or 2 , set the decimal value of the tripset to zero and leave the decimal point location and prefix where it is. You can check if the alarm is turned off reading Viewing Alarms on page 7.

## Delay

This is the number of intervals that the alarm must be consecutively activated to actually trip the alarms. It is usually set to 1 .

## Pause

This is the number of seconds after the level has decreased below the trip set that the alarm will remain activated. It is used to keep the alarm on longer than one interval. It is usually set around 10 seconds. It can be set longer but it usually is determined by how long the beeper (or external alarm) needs to be on to arouse someone that there is a problem.

## CALIBRATION MENU

If you entered this menu then the following are available:

## Calibration Constant

This value will change the level in the display. If the display is reading $10 \%$ too low, then raise the calibration constant $10 \%$. The value has 3 digits followed by an exponent. For best results, the 3 digits should be in the range of 1.00 to 9.99 . If you need to go up or down beyond these limits, raise or decrease the exponent to account for the change. For example if you had a calibration constant of 9.50 and the exponent is 3 and you needed to increase the reading by $20 \%$ then the new value would be 1.14 with an exponent of 4 .

## Deadtime

This is the number in microseconds that the instrument uses to correct for deadtime losses in the detector. Set it to zero if you do not want any deadtime correction. It is useful to extend the range of pulsed detectors such as GM detectors and proportional detectors. It should be turned off for ion chambers.

## SETUP MENU

If you entered this menu then the following are available:

## Start Time

When the instrument is turned on it waits before going into normal operation. This gives time for the instrument to stabilize. The display shows the seconds counting down until normal operation. The start time is the starting number for the countdown. It can also be thought of as the start delay. If it is set to a low number the detector may not stabilize in time for the alarms. If it is set to a high value, it only delays normal operation longer than necessary.

## Fail Time

If the display does not receive a count from the detector it will show a failure in the display. The fail time is the number of seconds after the last count before the instrument will show FAILURE in the display. If the fail time is set to 60 seconds, it will take 60 seconds after the detector fails before the instrument will display FAILURE. The factory setting is 255 , which is the maximum value. To turn it off, set it to zero.

## Alm Setup (Alarm Setup)

This is a number that is used to set the condition of the alarms, indicators and external outputs. There are 4 setups, one for each of the three alarms and one for no alarms. Below is a description of the alarms, indicators and external outputs. Each can be set to only two values, 0 or 1 . Following the descriptions is the method used to calculate the values and to determine the decimal value.

## Relay

This controls the relay. The contacts of the relay are brought out to the terminal strip (TS). When the relay is set to 1, TS10 and TS11 are shorted, and TS11 and TS12 are open. When the relay is 0, pin TS10 and TS11 are open and TS11 and TS12 are shorted. The relay is operated in the fail-safe mode. The signal that drives the relay is also routed to pin 14 on the terminal strip. When the relay is set to 0 the pin is at 12 volts and the relay is not energized. When the relay is set to 1 the pin is at 0 volts and the relay is energized. This setting also controls an extra external output on the terminal strip. When the relay is set to 1 then pin 15 on the terminal strip is low.

TS16
This is pin \#16 on the terminal strip. When TS16 is set to 1 then pin \#16 on the terminal strip is low. This is only used for external control of additional relays or devices and is not used in normal operation of the monitor.

## TP4

This is an internal test pin on the circuit board. When TP4 is set to 1 then the testpoint \#4 on the display circuit board is high. This pin has no normal function and is not used in normal operation of the monitor.

## TP5

This is an internal test pin on the circuit board. When TP5 is set to 1 then the testpoint \#5 on the display circuit board is high. This pin has no normal function and is not used in normal operation of the instrument.

## Red Led

This is the front panel red LED. It is marked TRIP HIGH on the front panel. If the RED LED is set to 1 then the LED is on.

## Yellow Led

This is the front panel yellow LED. It is marked TRIP LOW on the front panel. If the YELLOW LED is set to 1 then the LED is on.

## Green Led

This is the front panel green LED. It is marked OK on the front panel. If the GREEN LED is set to 1 then the LED is on.

## Buzzer

This is the front panel buzzer. If BUZZER is set to 1 then the buzzer is turned on and emits a loud continuous beep.

## Decimal

The following table is a compilation of the settings of all the parts of the alarm setup. The decimal is the value that is calculated from the results of the table. The line of one's and zero's on a row is actually a binary number. This number is converted to decimal and that is the decimal number. For example the third line of the table below shows:

## No Alarm 1***0 010

If you change the * to zeros it becomes the number 10000010. This is a binary number. To find its decimal equivalent, look at the binary to decimal conversion table in the appendix. Look at the third binary column from the left and about 10 numbers down. You should find the number 10000010. Next to it is the number 130. This is the decimal conversion. 10000010 in binary is 130 in decimal. This decimal number is the number you enter into the alarm setup.
The following is a table that shows the normal operation of the instrument, as it is setup using the factory presets.

|  | RELAY | TS16 | TP4 | TP5 | RED LED | YELLOW <br> LED | GREEN <br> LET | BEEPER | DECIMAL <br> VALUE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Alarm 1 | 0 | ${ }^{*}$ | ${ }^{*}$ | ${ }^{*}$ | 1 | 0 | 0 | 1 | 9 |
| Alarm 2 | 0 | ${ }^{*}$ | ${ }^{*}$ | ${ }^{*}$ | 1 | 0 | 0 | 1 | 9 |
| No Alarm | 1 | ${ }^{*}$ | ${ }^{*}$ | ${ }^{*}$ | 0 | 0 | 1 | 0 | 130 |

*Setting does not matter for normal operation. We suggest each of these be set to 0 . The decimal calculations assume that the items marked * are set to 0 .

## Units

This sets the units that are displayed. It should be preset for your detector. The values are:

| UNITS TABLE |  |  |  |
| :--- | :--- | :--- | :--- |
| Setting | Units | Setting | Units |
| 0 | Cnt | 6 | Gv |
| 1 | REM | 7 | dis |
| 2 | rad | 8 | CPM |
| 3 | R | 9 | CPS |
| 4 | Sv |  |  |
| 5 | Ba |  |  |

## Timebase

This has 4 possible settings and sets the characters in the display. It should be preset for your detector. Changing this does not change the calibration.

| TIMEBASE TABLE |  |  |  |
| :--- | :--- | :--- | :--- |
| Setting | Timebase | Setting | Timebase |
| 0 | none | 2 | $/ \mathrm{m}$ |
| 1 | /h | 3 | $/ \mathrm{s}$ |

## Display Type

There are 4 display types. They change the way the data changes the prefix when it changes ranges. It should be preset for your detector. The 4 types and their settings are:

1. This is engineering format. The units change every 3 decades. This is the recommended setting.
2. This extends the engineering format up 1 so that a prefix change will not occur when the value moves above 999. For example instead of going from $999 \mathrm{mR} / \mathrm{h}$ to $1.00 \mathrm{R} / \mathrm{h}$ this will go from $999 \mathrm{mR} / \mathrm{h}$ to $1000 \mathrm{mR} / \mathrm{h}$ with a constant zero in the right hand digit. On the next higher decade change the prefix will change.
3. This extends the engineering format down 1 decade so that a prefix change will not occur when the value goes below 100. For example instead of going from $1.00 \mathrm{mR} / \mathrm{h}$ to $999 \mathrm{uR} / \mathrm{h}$ the display would go from $1.00 \mathrm{mR} / \mathrm{h}$ to $.999 \mathrm{mR} / \mathrm{h}$. On the next lower decade the display would change the prefix.
4. This is a combination of 2 and 3 where the span of one prefix will be extended up and down 1 decade.

| DISPLAY TYPE |  |  |  |
| :--- | :--- | :--- | :--- |
| Setting | Type | Setting | Type |
| 1 | Enqineering | 3 | Down 1 decade |
| 2 | up 1 decade | 4 | Up \& Dn 1 |

## Prefix

The prefix is the starting point for the display. It should be preset for your detector.

| PREFIX TABLE |  |  |  |
| :--- | :--- | :--- | :--- |
| Setting | Prefix | Setting | Prefix |
| 0 | a atto | 7 | K kilo |
| 1 | f femto | 8 | M meaa |
| 2 | p pico | 9 | G aiaa |
| 3 | n nano | 10 | T tera |
| 4 | u micro | 11 | P penta |
| 5 | m milli | 12 | E exa |
| 6 | none |  |  |

## Range $\mathrm{Hi} / \mathrm{Lo}$ Limits

This sets the limits of the display, both upper and lower limits. It has the value from 119 to 136 with 128 in the center. Set this to keep the detector from being too sensitive and to keep it from going into a high scale that may not be usable because of saturation or excessive deadtime losses. Set Range Hi Limit to one value higher than you want to use, Range Lo Limit to the actual range you want to use. It should be preset for your detector.

RANGE HI/LO TABLE Center is the point of calculation for the calibration. Higher means the ranges with more counts. Lower means the ranges with fewer counts. (Table values assuming type 1 Display.)

| Settin <br> $g$ | Range (decade) | Setting | Range (decade) |
| :--- | :--- | :--- | :--- |
| 128 | X.XX Center | 127 | XXX |
| 129 | XX.X | 126 | XX.X |
| 130 | XXX | 125 | X.XX |
| 131 | X.XX | 124 | XXX |
| 132 | XX.X | 123 | X.X.X |
| 133 | XXX | 122 | X.XX |
| 134 | X.XX | 121 | XXX |
| 135 | XX.X | 120 | XX.X |
| 136 | XXX Hiaher | 119 | X.XX Lower |

## Time Constant

This sets the rate of change of the display. It should be preset for your detector.

| TIME CONSTANT |  |  |  |
| :--- | :--- | :--- | :--- |
| Setting | Time Constant | Setting | Time Constant |
| 0 | Fast | 2 | Slow |
| 1 | Medium |  |  |

## Zero Offset

The zero offset is for detectors that require it. The 6012 subtracts this value from the raw counts every second before it is used to set the alarms or view on the display. Set it to the value specified in the manual for the detector. The radiation level can be viewed without the zero offset by pushing the up button on the control panel. It is used with ion chambers and set to 0 with GM and proportional detectors.

## VIII. RS232 SERIAL OUTPUT

Every second the display sends out a packet of data via the RS232 serial output. The packet is the data at the time it was sent and should look like:
000001641.23 uSv/h

The data from left to right is:

| 1 | XXXXXX | 6 hex digits: Counts per second from detector. |
| :--- | :--- | :--- |
| 6 | XX | 1 hex digit This is the status byte. See below for a description. |
| 2 | XXX | 3 digits with units that are the same level as shown on the display |

## STATUS BYTE

The status byte consists of 8 bits. The bits are represented as follows: Bit 0 is the LSB and bit 7 is the MSB. Only bits 0 thru 4 are used.

## BIT FUNCTION

1. $0=$ no trip, $1=$ trip for alarm 1
2. $0=$ no trip, $1=$ trip for alarm 2
3. $0=$ no fail, $1=$ fail

## SERIAL PROTOCOL

9600 baud rate, 1 stop bit, no parity
There is no flow control.

## VII. CALIBRATION

The instrument is calibrated digitally. There are two adjustments for each detector that effect the calibration. The instrument is adjusted by changing the calibration factor with exponent, and the deadtime.

## ABOUT CALIBRATION, EXPONENT AND DEADTIME FACTORS

The Calibration, Exponent and Deadtime Factors are all used in the Calibration of the instrument. The Calibration and Exponent are in reality one number. This number is used to increase and decrease the value of the calibration. If the calibration is $10 \%$ too low then it is necessary to increase the Calibration Factor 10\%.

The combination of Calibration Factor and Exponent are, in reality, a number in scientific notation. A Calibration Factor of 6.35 and an exponent of 2 is in scientific notation $6.35 \times 10^{2}$. The Calibration Factor should be set in the range of 1.00 to 9.99 . Raise and lower the exponent to compensate if it is necessary to go beyond these limits. For example, if the Calibration Factor is 9.5 and the Exponent is 3 then an increase of $10 \%$ would be $9.5 \times 1.1=$ 10.45. This is not in the range of 1.00 to 9.99 so decrease the Calibration Factor by 10 and add one to the exponent, which would be 1.04 with an exponent of 4 . The same is true of the other direction. If the Calibration Factor is 1.24 and the Exponent is 3 and it is necessary to decrease it by $30 \%$ then 1.24 would be reduced to .868 . This is below 1.00 so decrease the exponent by 1 to 2 and increase the Calibration Factor by 10 to 8.68 .
The range of the Exponent is from -40 to +40 . In reality it should never be necessary to set it over the range of -8 to +8 .
The deadtime is in units of microseconds. It should be close to the value specified by the manufacturer of the detector. Its value is from 0 to $999 \mu \mathrm{~S}$. It will be adjusted during the calibration.

## RADIATION CALIBRATION

1. Expose the detector to a radiation field that is at the lower end of the sensitivity of the detector. Change the Calibration Factor and Exponent until the reading is correct.
2. Expose the detector to a field that is at the upper end of the sensitivity of the detector. Adjust the Deadtime until the reading is correct.
3. Repeat steps 3 and 4 until both settings are correct.
4. Expose each range/decade and note the readings on the calibration report.

## IX. CIRCUIT DESCRIPTION

## DISPLAY

The display is controlled by the microprocessor, U5. U1 is an address latch that separates the address and data for the EPROM U7. U4 is the LCD display. U2 is the EEPROM that stores the variables. U8 is the address decoder for U4. U11 is a shift register that shifts data in and has a parallel out. It is used, though the buffer U10 to drive the buzzer and the front panel LEDs. The relay is connected directly to the microprocessor through U10:G and U8:D. This is done to make the relay fail-safe. If the microprocessor is reset either by power on or by the watchdog timer U3, then the output pin P1.4 will float high opening the relay. U6 divides the incoming counts by 2 to slow them down. U9 and U12 are RS232 and RS485 outputs respectively. U13 and U14 are used as inputs and outputs to the detector. In this case only U14 is used as an input. U15 is a 5 volt voltage regulator and U16 converts this to -5 volts for the LCD contrast. R1 adjusts the contrast. U3 is a watchdog timer for the MPU and it needs a pulse on the DACCL at least every second to keep the watchdog from timing out.

## MODIFICATIONS

Not all of the parts on the circuit board and schematic are included in this model. They are included for future changes or to allow this circuit board to be used in different ways. This includes jumpers for RS232 and RS485 inputs and outputs on both the communications lines and the data lines from the detectors. The lines from the detector are designed to accept pulses or serial data from the detector. The watchdog can be disabled by JP12.

## X. MAINTENANCE

This section discusses the circuit of the instrument and any adjustments that may be needed.

## SHORTCUTS

Push the right hand button on the control panel during the warm-up period to cancel the warm-up period. Also remember to push the right hand button on the control panel to see the action of the alarms and to tell which alarm is tripping. Push the center button on the control panel during normal operation to cancel the alarms. This is almost as good as a reset, but it does not clear the average or the current reading, it just quiets the buzzer.

If you have the complete cover off of the display, the reset button on the top of the board above the display can be used to abort the setup routine. Just push it while in the setup routine. You can also abort the setup routine by turning off the power or by holding down the left hand button until the LCD shows the startup display.
If you are testing the alarms and the noise is too loud, put a piece of tape over the beeper. It will not make it quiet but it will reduce the volume.

## ADJUSTMENTS

There is 1 adjustment. The contrast is located on the control panel under the bottom cover on the front of the display. Turning it will change the contrast of the display. The best adjustment is to turn the control until the display is too dark, then lighten it up to the point where the black squares around the characters just disappear.

## TESTING

DISPLAY
The display alarms and annunciators can be tested by pushing down the center button when the display is counting down the startup time. Startup time can be initiated by pushing the reset button on the display if the entire front panel is removed or by interrupting the power. When the center button is held down the instrument will cycle through 9 different annunciators in the following order:

Red LED, Yellow LED, Green LED, Front panel buzzer, Relay (operated fail safe), TS15, TS16, TP4, TP5

The cycle will then repeat as long as the button is held down.
The watchdog timer can be checked by pushing the left hand button and holding it down. The display will alternate between the turn-on display and the first preset menu about every 2 seconds. The pulse is the watchdog timing out and resetting the microprocessor.

## APPENDIX I

## USER TABLES

The blank tables below are useful to determine how you want the alarms setup. Copy it and fill it out not only for ease of programming, but also for your records.

DATE $\qquad$ SERIAL NUMBER $\qquad$
LOCATION $\qquad$ BY $\qquad$
ALARM SETUP

|  | RELAY | TS16 | TP4 | TP5 | RED LED | $\begin{array}{l}\text { YELLOW } \\ \text { LED }\end{array}$ | $\begin{array}{l}\text { GREEN } \\ \text { LET }\end{array}$ | BEEPER |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}DECIMAL <br>

VALUE\end{array}\right]\)

ENTER THE DECIMAL NUMBERS ABOVE INTO THE SETUP BOXES BELOW

## SUMMARY OF SETTINGS

|  | TRIPSET | DELAY | PAUSE | SETUP |
| :--- | :--- | :--- | :--- | :--- |
| ALARM 1 |  |  |  |  |
| ALARM 2 |  |  |  |  |
| NO ALARM |  |  |  |  |

START TIME $\qquad$
FAIL TIME $\qquad$

| .APPENDIX II |  |
| :---: | :---: |
| DECIMAL/HEX/BINARY |  |
|  | NVERSION TABLE |
|  | EC HEX BINARY |
|  | 0000000000 |
|  | 0100000001 |
|  | 0200000010 |
|  | 0300000011 |
|  | 0400000100 |
|  | 0500000101 |
|  | 0600000110 |
|  | 0700000111 |
|  | 0800001000 |
| 9 | 0900001001 |
| 10 | 0A 00001010 |
|  | OB 00001011 |
|  | OC 00001100 |
| 13 | OD 00001101 |
|  | OE 00001110 |
|  | OF 00001111 |
|  | 1000010000 |
| 17 | 1100010001 |
| 18 | 1200010010 |
| 19 | 1300010011 |
| 20 | 1400010100 |
|  | 1500010101 |
| 22 | 1600010110 |
| 23 | 1700010111 |
| 24 | 1800011000 |
| 25 | 1900011001 |
| 26 | 1A 00011010 |
| 27 | 1B 00011011 |
| 28 | 1C 00011100 |
| 39 | 1D 00011101 |
| 30 | 1E 00011110 |
| 31 | 1F 00011111 |
| 32 | 2000100000 |
| 33 | 2100100001 |
| 34 | 2200100010 |
| 35 | 2300100011 |
| 36 | 2400100100 |
| 37 | 2500100101 |
| 38 | 2600100110 |
| 39 | 2700100111 |
| 40 | 2800101000 |
|  | 2900101001 |
| 42 | 2A 00101010 |
| 43 | 2B 00101011 |
| 44 | 2C 00101100 |
| 45 | 2D 00101101 |
| 46 | 2E 00101110 |
| 47 | 2F 00101111 |
| 48 | 3000110000 |
| 49 | 3100110001 |
| 50 | 3200110010 |
| 51 | 3300110011 |
| 52 | 3400110100 |
| 53 | 3500110101 |
| 54 | 3600110110 |
| 55 | 3700110111 |
| 56 | 3800111000 |
| 57 | 3900111001 |
| 58 | 3A 00111010 |
| 59 | 3B 00111011 |
| 60 | 3C 00111100 |
| 61 | 3D 00111101 |
|  | 3E 00111110 |
|  | 3 F 00111111 |


| 64 | 4001000000 | 12880 | 10000000 |
| :---: | :---: | :---: | :---: |
| 65 | 4101000001 | 12981 | 10000001 |
|  | 4201000010 | 13082 | 10000010 |
| 67 | 4301000011 | 13183 | 10000011 |
| 68 | 4401000100 | 13284 | 10000100 |
| 69 | 4501000101 | 13385 | 10000101 |
| 70 | 4601000110 | 13486 | 10000110 |
| 71 | 4701000111 | 13587 | 10000111 |
| 72 | 4801001000 | 13688 | 10001000 |
| 73 | 4901001001 | 13789 | 10001001 |
| 74 | 4A 01001010 | 138 8A | 10001010 |
| 75 | 4B 01001011 | 139 8B | 10001011 |
| 76 | 4C 01001100 | 1408 C | 10001100 |
| 77 | 4D 01001101 | 1418 D | 10001101 |
| 78 | 4E 01001110 | 142 8E | 10001110 |
| 79 | 4 F 01001111 | 143 8F | 10001111 |
| 80 | 5001010000 | 14490 | 10010000 |
| 81 | 5101010001 | 14591 | 10010001 |
| 82 | 5201010010 | 14692 | 10010010 |
| 83 | 5301010011 | 14793 | 10010011 |
| 84 | 5401010100 | 14894 | 10010100 |
| 85 | 5501010101 | 14995 | 10010101 |
| 86 | 5601010110 | 15096 | 10010110 |
| 87 | 5701010111 | 15197 | 10010111 |
| 88 | 5801011000 | 15298 | 10011000 |
| 89 | 5901011001 | 15399 | 10011001 |
| 90 | 5A 01011010 | 154 9A | 10011010 |
| 91 | 5B 01011011 | 155 9B | 10011011 |
| 92 | 5C 01011100 | 156 9C | 10011100 |
| 93 | 5D 01011101 | 157 9D | 10011101 |
| 94 | 5E 01011110 | 158 9E | 10011110 |
| 95 | 5F 01011111 | 159 9F | 10011111 |
| 96 | 6001100000 | 160 A0 | 10100000 |
| 97 | 6101100001 | 161 A1 | 10100001 |
| 98 | 6201100010 | 162 A2 | 10100010 |
| 99 | 6301100011 | 163 A3 | 10100011 |
| 100 | 6401100100 | 164 A4 | 10100100 |
| 101 | 6501100101 | 165 A5 | 10100101 |
| 102 | 6601100110 | 166 A6 | 10100110 |
| 103 | 6701100111 | 167 A7 | 10100111 |
| 104 | 6801101000 | 168 A8 | 10101000 |
| 105 | 6901101001 | 169 A9 | 10101001 |
| 106 | 6A 01101010 | 170 AA | 10101010 |
| 107 | 6B 01101011 | 171 AB | 10101011 |
| 108 | 6C 01101100 | 172 AC | 10101100 |
| 109 | 6D 01101101 | 173 AD | 10101101 |
| 110 | 6E 01101110 | 174 AE | 10101110 |
| 111 | 6F 01101111 | 175 AF | 10101111 |
| 112 | 7001110000 | 176 B0 | 10110000 |
| 113 | 7101110001 | 177 B1 | 10110001 |
| 114 | 7201110010 | 178 B2 | 10110010 |
| 115 | 7301110011 | 179 B3 | 10110011 |
| 116 | 7401110100 | 180 B4 | 10110100 |
| 117 | 7501110101 | 181 B5 | 10110101 |
| 118 | 7601110110 | 182 B6 | 10110110 |
| 119 | 7701110111 | 183 B7 | 10110111 |
| 120 | 7801111000 | 184 B8 | 10111000 |
| 121 | 7901111001 | 185 B9 | 10111001 |
| 122 | 7A 01111010 | 186 BA | 10111010 |
| 123 | 7B 01111011 | 187 BB | 10111011 |
| 124 | 7C 01111100 | 188 BC | 10111100 |
| 125 | 7D 01111101 | 189 BD | 10111101 |
| 126 | 7E 01111110 | 190 BE | 10111110 |
| 127 | 7F 01111111 | 191 BF | 10111111 |

1288010000000 1298110000001 1308210000010 1328410000100 1338510000101 8610000110 10000111 1378910001001 138 8A 10001010 140 8C 10001100 141 8D 10001101 43 8F 10001111 1449010010000 -10010001 146210010010 1489410010100 1499510010101 1519710010111 1529810011000 54 9A 1001 155 9B 10011011 9C 10011100 10011101 159 9F 10011111 160 A0 10100000 62 A2 10100010 163 A3 10100011 64 A4 10100100 01 167 A7 10100111 168 A8 10101000 170 AA 10101010 171 AB 10101011 73 AD 10101101 174 AE 10101110 176 B0 10110000 177 B1 10110001 178 B2 10110010 179 B3 10110011 181 B5 10110101 182 B6 10110110 184 B8 10111000 185 B9 10111001 B 10111010 188 BC 10111100

190 BE 10111110 191 BF 10111111

PAGE 17
Health Physics Instruments

192 C0 11000000
193 C1 11000001
194 C2 11000010
195 C3 11000011
196 C4 11000100
197 C5 11000101
198 C6 11000110
199 C7 11000111
200 C8 11001000
201 C9 11001001
202 CA 11001010
203 CB 11001011
204 CC 11001100
205 CD 11001101
206 CE 11001110
207 CF 11001111
208 D0 11010000
209 D1 11010001
210 D2 11010010
211 D3 11010011
212 D4 11010100
213 D5 11010101
214 D6 11010110
215 D7 11010111
216 D8 11011000
217 D9 11011001
218 DA 11011010
219 DB 11011011
220 DC 11011100
221 DD 11011101
222 DE 11011110
223 DF 11011111
224 EO 11100000
225 E1 11100001
226 E2 11100010
227 E3 11100011
228 E4 11100100
229 E5 11100101
230 E6 11100110
231 E7 11100111
232 E8 11101000
233 E9 11101001
234 EA 11101010
235 EB 11101011
236 EC 11101100
237 ED 11101101
238 EE 11101110
239 EF 11101111
240 FO 11110000
241 F1 11110001
242 F2 11110010
243 F3 11110011
244 F4 11110100
245 F5 11110101
246 F6 11110110
247 F7 11110111
248 F8 11111000
249 F9 11111001
250 FA 11111010
251 FB 11111011
252 FC 11111100
253 FD 11111101
254 FE 11111110
255 FF 11111111

DISPLAY PARTS LIST

| DESIGN | QUAN | PART NO | TYPE | DESCRIPTION | MFG | SUPPLIER | DRAWING \# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BZ1 | 1 | EFB-CB37C11 |  | Buzzer | Panasonic | Digikey | 6012-001 |
| C01 | 1 |  | 22 pF | Calpacitor, Mono |  |  | 6012-001 |
| C 02 | 1 |  | 22 pF | Calpacitor, Mono |  |  | 6012-001 |
| C03 | 1 |  | 22 uF 10 VDC | Capacitor, Electro |  |  | 6012-001 |
| C04 | 1 |  | 22 uF 10 VDC | Capacitor, Electro |  |  | 6012-001 |
| C05 | 1 |  | 22 uF 10 VDC | Capacitor, Electro |  |  | 6012-001 |
| C06 | 1 |  | 22 uF 10 VDC | Capacitor, Electro |  |  | 6012-001 |
| C11 | 1 |  | 100 uF 25 VDC | Capacitor, Electro |  |  | 6012-001 |
| C12 | 1 |  | 10 uF 10 VDC | Capacitor, Tantalum |  |  | 6012-001 |
| C13 | 1 |  | 10 uF 10 VDC | Capacitor, Tantalum |  |  | 6012-001 |
| C14 | 1 |  | 10 uF 10 VDC | Capacitor, Tantalum |  |  | 6012-001 |
| CX1 | 1 |  | 0.1 uF | Capacitor, Mono |  |  | 6012-001 |
| CX2 | 1 |  | 0.1 uF | Capacitor, Mono |  |  | 6012-001 |
| CX3 | 1 |  | 0.1 uF | Capacitor, Mono |  |  | 6012-001 |
| CX4 | 1 |  | 0.1 uF | Capacitor, Mono |  |  | 6012-001 |
| D1 | 1 |  | RED T1 3/4 | LED |  |  | 6012-001 |
| D2 | 1 |  | YELLOW T1 3/4 | LED |  |  | 6012-001 |
| D3 | 1 |  | GREEN T1 3/4 | LED |  |  | 6012-001 |
| D4 | 1 | 1N4004 |  | DIODE |  |  | 6012-001 |
| D5 | 1 | 1N4004 |  | DIODE |  |  | 6012-001 |
| K1 | 1 | G2E-184PM-US-DC12 | 12 V SPDT | Relay, Dip | Omron | Digikey | 6012-001 |
| P1A | 1 | EDSTLZ950/20 | 20 Position | Header, Terminal | OST | Digikey | 6012-001 |
| P1B | 1 | EDZ950/18 | 18 Position | Plug, Terminal | OST | Digikey | 6012-001 |
| P1C | 1 | EDZ950/2 | 2 Position | Plug, Terminal | OST | Digikey | 6012-001 |
| R1 | 1 |  | 10K 1 Turn | Trimmer |  |  | 6012-001 |
| R2 | 1 |  | 10K x 9 | Resistor Network |  |  | 6012-001 |
| R5 | 1 |  | 470 5\% 1/4W CF | Resistor |  |  | 6012-001 |
| R6 | 1 |  | 470 5\% 1/4W CF | Resistor |  |  | 6012-001 |
| R7 | 1 |  | 470 5\% 1/4W CF | Resistor |  |  | 6012-001 |
| S1 | 1 |  | Min EVQ | Switch, Pushbutton | Panasonic | Digikey | 6012-001 |
| S2 | 1 |  | Min EVQ | Switch, Pushbutton | Panasonic | Digikey | 6012-001 |
| S3 | 1 |  | Min EVQ | Switch, Pushbutton | Panasonic | Digikey | 6012-001 |
| S4 | 1 |  | Min EVQ | Switch, Pushbutton | Panasonic | Digikey | 6012-001 |
| U01 | 1 | 74HC573 | 8 bit | Latch |  |  | 6012-001 |
| U02 | 1 | 27LC02 |  | EEPROM | Microchip | Digikey | 6012-001 |
| U03 | 1 | MAX813LCPA |  | Supervisor, Micro | Maxim | Digikey | 6012-001 |
| U04 | 1 | MDLS-16265-G-LVLED04 | 2 x 16 Alphanumeric | LCD Display | VARITRONIX | Digikey | 6012-001 |
| U05 | 1 | P80C32GBPN | 8 bit | Microprocessor | Signetics |  | 6012-001 |
| U06 | 1 | 4013B | Dual D type | Flip Flop |  |  | 6012-001 |
| U07 | 1 | 27 C 256 | $32 \mathrm{~K} \times 8$ | EPROM |  |  | 6012-001 |
| U0 8 | 1 | 74 HCOO |  | QUAD NAND |  |  | 6012-001 |
| U09 | 1 | MAX232CPE |  | RS232 Driver | Maxim | Digikey | 6012-001 |
| U10 | 1 | DS2003N | Darlington | Drivers | National | Digikey | 6012-001 |
| U11 | 1 | 4094B | 8 bit | Shift Register |  |  | 6012-001 |
| U14 | 1 | DS75176BN | RS485 | Driver/Rcvr | National | Digikey | 6012-001 |
| U15 | 1 | 7805 | 5 Volt | Voltage Regulator |  |  | 6012-001 |
| U16 | 1 | ICL7660CSPA | 5 Volt | Voltage Inverter | Harris | Digikey | 6012-001 |
| X1 | 1 |  | HC-49 7.3728 MHz | Crystal | CTS | Digikey | 6012-001 |
| M01 | 1 | 6012-002 |  | BASE | HPI | Neal Feay | 6012-005 |
| M02 | 1 | 6012-003 |  | COVER | HPI | Neal Feay | 6012-005 |
| M03 | 1 | 6012-004 |  | COVER SHIELD | HPI | Neal Feay | 6012-005 |
| M04 | 4 |  | \#4 x 3/4 | Nylon Spacer |  |  | 6012-005 |
| M05 | 5 |  | 6-32 x 1/4 | Hex Spacer |  |  | 6012-005 |
| M06 | 13 |  | 6-32 x 1/4 | Screw, Pan X |  |  | 6012-005 |
| M07 | 13 |  | \#6, Int Star | Locwasher |  |  | 6012-005 |
| M08 | 2 |  | \# $4 \times 1 / 2$ | Spacer, Nylon |  |  | 6012-005 |
| M09 | 2 |  | 4-40 $\times 3 / 4$ | Screw, Pan X |  |  | 6012-005 |
| M10 | 2 |  | \#4 Int Star | Lockwasher |  |  | 6012-005 |
| M11 | 1 |  | 6-32 X 1" | Spacer, Hex |  |  | 6012-005 |
| M12 | 1 |  | 6-32 X 1/4 | Screw, FH, X |  |  | 6012-005 |
| M13 | 2 |  | 3/8-24 x 3/8 | Thumbscrew |  |  | 6012-005 |
| M14 |  | 2030-004 |  | Wall Bracket |  |  | 6012-005 |
| M15 | 1 |  | Lexan | Window |  |  | 6012-005 |
| M16 | 4 |  | \#6 Nylon | Washser |  |  | 6012-005 |
| M17 | 4 |  | 6-32 $\times 3 / 8$ | Screw, Pan X |  |  | 6012-005 |




